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ABSTRACT
Although extremely flexible and obviously useful for many risk assessment

problems, Monte Carlo methods have four significant limitations that risk analysts should
keep in mind. (1) Like most methods based on probability theory, Monte Carlo methods
are data-intensive. Consequently, they usually cannot produce results unless a
considerable body of empirical information has been collected, or unless the analyst is
willing to make several assumptions in the place of such empirical information. (2)
Although appropriate for handling variability and stochasticity, Monte Carlo methods
cannot be used to propagate partial ignorance under any frequentist interpretation of
probability. (3) Monte Carlo methods cannot be used to conclude that exceedance risks
are no larger than a particular level. (4) Finally, Monte Carlo methods cannot be used to
effect deconvolutions to solve backcalculation problems such as often arise in remediation
planning. This paper reviews a series of ten exemplar problems in risk analysis for which
classical Monte Carlo methods yield an incorrect answer.

KEYWORDS: data requirements, nonstatistical uncertainty, ignorance, exceedance risks,
deconvolution, backcalculation
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INTRODUCTION
As discussed in other articles in this special issue commemorating their modern use

in scientific calculation, Monte Carlo methods provide flexible and extremely powerful
techniques for solving many of the central problems in risk analysis. Facilitated by the
widespread availability of microcomputers, Monte Carlo methods, like statistical
resampling approaches in general (Efron and Diaconis, 1983; Simon and Bruce, 1991), have
lately come to be perceived as a fundamental tool by which a many formerly very difficult
estimation problems become trivial. Nevertheless, Monte Carlo methods cannot do
everything, and they cannot solve all the problems in risk analysis involving calculation.
In the interest of maintaining a certain sobriety as we celebrate the utility of Monte Carlo
methods, it is important to consider the limitations that constrain the use of the approach.
This paper reviews four of the most important ones in risk analysis. The following section
lists ten risk analysis problems, most of which appear straightforward or even simple,
which cannot be formally solved using the Monte Carlo methods that most risk analysts
would use.
RISK ANALYSIS PROBLEMS THAT MONTE CARLO METHODS CANNOT SOLVE

Consider the following exemplar problems:
(1) Suppose we need to estimate the product of two imperfectly known inputs. We

know that the first, A, can be no smaller than 0.2 and no larger than 0.4. We also
know the second, B, can be no smaller than 0.3 and no larger than 0.5. But no further
information is available about A or B. How should the product AB be characterized?

(2) Suppose we know that A is no smaller than 0.2 and no larger than 0.3, and that B is
lognormally distributed with median 5 (μ=ln(median) 1.6) and coefficient of
variation 0.2 (σ= 0.2). What can be said about the product AB?

(3) Suppose we know that A is lognormally distributed with median of 2 and coefficient
of variation 0.1 (μ 0.69, σ 0.1), and that B is lognormally distributed with median 5
and coefficient of variation 0.2 (μ 1.6, σ 0.2). How large is the frequency with which
the product AB exceeds 14?

(4) Given A and B as above, and the correlation between A and B is zero, how large is the
frequency with which the product AB exceeds 14?

(5) Given A and B as above, and the correlation between A and B is 0.3, how large is the
frequency with which the product AB exceeds 14?

(6) Given A and B as above, and Spearman’s (rho) correlation between A and B is 0.3,
how large is the frequency with which the product AB exceeds 14?

(7) Suppose A B=C where A, B, and C are random variables with A and B independent.
If A has a lognormal distribution with median 2 and coefficient of variation 0.1
(μ 0.69, σ 0.1), and C has a lognormal distribution with median 5 and coefficient of
variation 0.2 (μ 1.6, σ 0.2), what is the distribution of B?

(8) Suppose we know well the marginal distributions for random variables A and B but
cannot specify exactly their joint distribution. How can we characterize the product
AB?

(9) Suppose we cannot specify the marginal distributions for random variables A and B
exactly. How can we characterize the product AB?

≈
√⎯⎯⎯⎯⎯⎯⎯⎯ln(CV2 + 1) ≈

≈ ≈
≈ ≈

×

≈ ≈
≈ ≈
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(10) Suppose we know the full joint distribution for random variables A and B but are not
sure of the precise function that should be used to combine them. How can we make
a reasonable characterization of the function of A and B?
Each of these exemplars is similar in form to common risk analysis problems which

are routinely addressed with Monte Carlo methods. Nevertheless, none of these problems
can be solved by a straightforward application of Monte Carlo methods. The reasons the
methods cannot be applied (or yield wrong answers) are discussed below for each
problem in turn. Most of the problems do have solutions, however, and these are also
discussed in the following sections.

It is important to note first that specific details have been included in the first seven
problems to make the discussions concrete. For instance, some problems refer to
lognormal distributions with given medians and coefficients of variation, or ask about the
product of multiplying random variables. It should be clear that analogous problems
could be phrased in terms of distributions with other parameters or other shapes and other
mathematical operations on them. There is no detail about a parameter or distribution
shape that renders a problem especially difficult. The details permit calculation of the
correct answer which will enable us to discern at a glance how the Monte Carlo method
fails in each case.
I. MONTE CARLO CANNOT PROPAGATE NONSTATISTICAL UNCERTAINTY

The first of the exemplar problems above asks about the product of two parameters
for which only minima and maxima are known. I recently posed this problem on the
RISKANAL list server (accessible by subscription through LISTSERV@LISTSERV.PNL.GOV).
About two-thirds of the fifty-five respondents gave the solution

AB = [0.2, 0.4] [0.3, 0.5] = [0.2 0.3, 0.4 0.5] = [0.06, 0.2]

which is the answer obtained by interval analysis (Moore, 1966; Neumaier, 1990). Almost
one third of respondents, however, suggested that a probabilistic approach should be
used. Most of the solutions they offered explicitly described a Monte Carlo method that
modeled A and B with uniform distributions over their respective ranges. Figure 1 depicts
the probability density function that results from convolving these two uniform
distributions together under an assumption of independence, which is the default
assumption about dependence in most software packages including Crystal Ball
(Burmaster and Udell, 1990) and @Risk (Salmento, Rubin, and Finkel, 1989; Barton, 1989).

The interval analysis answer and the Monte Carlo distribution agree in the sense that
they both say the answer must lie somewhere in the range between 0.06 and 0.2.
However, the probability distribution says quite a bit more than this. It asserts that the
probability that the product is toward one of the extreme values is much less than the
probability that it has a more central value. But where in the statement of the problem can
we find the justification for this concentration of probability in the center of the range? In
fact, of course, any probability distribution over the range 0.06 to 0.2 might be the true
distribution of products. There is nothing given in the statement of the problem which we
can use to narrow this set. Even a delta distribution at 0.06 or 0.2 cannot be excluded.

× × ×
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The idea that it is appropriate to assume probabilistic uniformity when only range
information is available dates back to Laplace himself. The idea has come to be known as
the ‘principle of insufficient reason’. Although it has been justified and generalized by
sophisticated theoretical development under the rubric of maximum entropy (Jaynes,
1957; Levine and Tribus, 1979; Grandy and Schick, 1991; Lee and Wright, 1994), the idea is
widely viewed with some skepticism, especially by those holding to a frequentist view of
probability theory (see Jaynes, 1979).

Ferson and Ginzburg (1996) have argued in some detail that interval analysis
provides the only reasonable solution to the first exemplar problem, at least from the point
of view of risk analysis. In the context of seeking a representation for a single underlying
number, the approach of using a uniform (or maximally entropic) distribution may be
reasonable. In the context of risk analysis, however, the approach yields answers that are
overconfident. This overconfidence generates results that are at least potentially
non-protective. For instance, it may be the case that larger (or smaller) values will occur
far more frequently than is implied by the particular distribution obtained. The Monte
Carlo approach and to be fair, any classical probabilistic approach cannot
comprehensively propagate nonstatistical uncertainty, at least under a frequentist
interpretation required by risk analysis.

A small minority of the RISKANAL respondents (2 out of 55) suggested that the
solution to the problem should be a uniform distribution over the range [0.06, 0.2]. Of
course, this solution also overstates what is justifiably deducible about the product AB,
but, in the sense that a uniform distribution ‘represents’ an interval, it is perhaps a little
more reasonable than the triangular shape shown in the figure. Nevertheless, from the
perspective of a risk analyst, it still potentially underestimates the tails of the distribution
in a way that cannot be justified by appeal to any empirical facts or assumptions stated in
the problem.

Some readers may criticize the first exemplar problem as unrealistic and argue that,
in most real-world circumstances, we actually have more information about a parameter
than just its minimum and maximum. It is true, of course, that such additional
information is often available. Nevertheless, this problem is certainly not impossible in
real settings and, because of its apparent simplicity, seems to deserve a cogent and
defensible solution even if it is only rarely encountered. One could argue further that
there always remains some degree of ignorance about a parameter that is not the result of
variability in virtually all real problems. Insofar as this problem offers insight into that
issue, it also deserves discussion. The more general case when other details about a
distribution are available but do not in themselves precisely specify a single distribution is
treated in the discussion below of the ninth exemplar problem.

The second exemplar problem seeks to combine an interval and a probability
distribution. Again, using a uniform distribution as a surrogate for an interval will allow
Monte Carlo methods to be used to obtain a solution. But doing so will yield a result that
is not justifiable given the stated foreknowledge. Figure 2 depicts both the result from a
Monte Carlo analysis and bounds on the true solution obtained by a direct probability
bounds analysis (Ferson, Ginzburg, and Akçakaya, 1996). Given the information stated in
the problem, these bounds are pointwise optimally narrow (Williamson and Downs, 1990).
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In other words, they could not be any narrower and yet still enclose all the probability
distributions that might actually arise as the product of A and B. We can see from the
figure that the Monte Carlo result suggests the frequency that the product is less than 1.0
is about 15%. In fact, this frequency could be as large as 50%, depending on the
distribution or value that A actually has within the interval. We again see that the Monte
Carlo approach cannot comprehensively propagate nonstatistical uncertainty.

The bounds on the product of an interval and a probability distribution could also be
obtained by an alternative strategy using sets of intervals to represent distributions (cf.
Berleant, 1993; 1996). If sections are taken systematically from the lognormal distribution
for B and multiplied by the interval [0.2, 0.3] according to the elementary rules of interval
analysis (Moore, 1966), the products will all be intervals. The cumulation of the left
bounds of these products would yield the left-hand bound of the region depicted in the
figure and the cumulation of the right bounds of the products would approximate the
right-hand bound.
II. MONTE CARLO CANNOT BOUND EXCEEDANCE RISKS

An exceedance risk is the frequency with which a random variable may exceed some
specified value. Exceedance risks are a focal concern for analysts doing environmental or
public health risk assessments such as exposure or cancer incidence modeling, sometimes
because there is a critical level beyond which consequences become intolerable. A central
task in risk analysis is to estimate how often such consequences may occur. The third
through sixth exemplar problems are couched as questions about computing exceedance
risks.

The dotted line in Figure 3 depicts the results of a Monte Carlo simulation of the third
exemplar problem in which lognormally distributed random deviates sampled
independently from the distributions for A and B are multiplied together. The result is
shown as a complementary cumulative distribution function (which is also known as the
survival function). From this curve we can read off the estimated frequency of the product
AB being larger than 14 as 6.5%. But this estimation is contingent on the assumption of
independence between A and B. The problem omitted any mention of the dependence
between A and B. Yet their dependence can have a substantial effect on the resulting
distribution. For instance, if the dependence is strongly positive, the exceedance risk
could well be twice as large. If the dependence between A and B is strongly negative, the
exceedance risk could be almost surely zero.

Williamson and Downs (1990; see also Frank, Nelsen, and Schweizer, 1987; Ferson
and Long, 1995) describe a numerical method for computing the possible range of
outcomes for given marginal distributions when their dependence is unknown. Their
representation scheme uses lower and upper discrete approximations to the quantile
function (the quasi-inverse of the distribution function) as bounds on a distribution. The
method is based fundamentally on the classical Fréchet (1935) inequalities

which give best possible bounds for the probabilities of conjunctions or disjunctions of

max(0,Pr(E) + Pr(F) − 1) ≤ Pr(E and F) ≤ min(Pr(E),Pr(F)),
max(Pr(E),Pr(F)) ≤ Pr(E or F) ≤ min(1,Pr(E) + Pr(F)),
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events when only the total probabilities of the events Pr(E ) and Pr(F ) are given and no
further information about the dependence between the events E and F is available.
Although the passage from events to random variables requires the invocation of copulas
(Schweizer and Sklar, 1983; Nelsen 1991; 1995) which capture the dependency relations
embodied in joint distributions, the algorithms developed by Williamson and Downs are
rather simple to use in risk analysis (Ferson and Long, 1995). Applying their method
yields the solid lines depicted in the figure. The solid lines describe bounds on the true
exceedance risk given only information about the marginal distributions of A and B. We
see from the figure that the risk that the product AB is larger than 14 could be anywhere
between zero and 25%. These bounds are known to be optimal in the sense that they could
not be any narrower without more specific information about the dependency between A
and B (Williamson and Downs, 1990). How then should we interpret the Monte Carlo
estimate of 6.5%?

In some cases, one can explore the range of possible exceedance risks by varying the
correlation coefficient over all possible values between 1.0 and +1.0. Several workers
(e.g., Mosleh and Bier, 1992; Burgman, Ferson, and Akçakaya, 1993; Bukowski, Korn and
Wartenberg, 1995) have suggested this strategy which might be called ‘dispersive Monte
Carlo sampling’ because of its relation to variance maximization (Bratley, Fox, and Shrage,
1983; Whitt, 1976). This strategy does not work in general however. Even varying the
correlation coefficient over all possible values cannot yield the entire range of the possible
values for the exceedance risk (Ferson, 1994; Ferson and Burgman, 1995). This is because
correlation is a very limited kind of linear dependency and such a strategy explores only a
small fraction of the space of possible dependencies between the two variables.

If, as in the case for the third exemplar problem, we do not know the dependence
between the variables, what justifies an assumption of independence, other than
computational convenience? The whole point of our interest in exceedance risks seems to
necessitate attention to this kind of problem. Without knowing the full joint distribution
of the two variables which expresses their dependence, the classical methods of
probability theory including Monte Carlo methods cannot compute an estimate of the
product distribution, even in principle. Unfortunately, this fact has not slowed many
analysts who routinely assume independence among all variables in the risk expression.
The statement of such assumptions is sometimes explicitly made, although it is often not.

The fourth exemplar problem assumes that the correlation between the two factors is
zero. But having zero correlation is not the same as being independent (Flury, 1986;
Nelsen, 1995). It is well known, for instance, that two normal random variables may have
a sum that is not even close to normal, even though their correlation is zero. Likewise, the
product of two lognormal random variables need not yield a lognormal distribution even
if they have zero correlation. There are infinitely many ways to achieve a zero correlation,
but there is only one way to be independent.

Similar difficulties persist in the fifth and sixth exemplar problems. Having a
particular (non-zero) correlation does not imply a particular joint distribution (Nelsen,
1991; 1992; 1995). The same is true for rank correlation. Even though Monte Carlo
software packages can simulate such correlations (Scheuer and Stoller, 1962; Iman and
Conover, 1982; Nelsen, 1986; 1987), they cannot describe such correlations in the sense of
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capturing the variety of distributions that may result when variables are combined
arithmetically. This means that, even if we have measured the correlation and dutifully
included it in a Monte Carlo simulation, we cannot be sure that the estimate of the
exceedance probabilities are not underestimates, perhaps substantial underestimates. To
put it most simply, the risks of adverse consequences may be decidedly higher than would
be predicted by Monte Carlo simulation, even in the unusually good circumstance of
knowing well both marginal distributions and correlation structure, and even with
infinitely many replications. These facts seem not to be widely appreciated in the risk
analysis community. How much higher the true frequencies may be is still an open
research question whose resolution merits serious attention.
III. MONTE CARLO CANNOT COMPUTE BACKCALCULATIONS

The seventh exemplar problem involves backcalculation (Burmaster, Lloyd, and
Thompson, 1995; Burmaster and Thompson, 1995). If, as is stated in the problem, A B=C
and we want to estimate B from A and C, an analyst might try to solve for B by rearranging
the equation to get B=C/A and estimating the answer by Monte Carlo. The result of this
approach is depicted in Figure 4 as a dotted line. This answer is wrong, however, as can
be easily checked by putting it back into the original equation and computing C. The
correct answer, i.e., the distribution that will yield the observed distribution for C when
convolved with that for A, is depicted as a solid line in the figure.

The reason for the discrepancy is that we tried to compute B by assuming
independence between A and C. But of course A and C cannot be independent of one
another. Indeed, one is a function of the other, so independence is manifestly an
inappropriate assumption. Solving such backcalculation problems requires a special
operation called deconvolution (Jansson, 1984; Ferson, 1995; Burmaster, Lloyd, and
Thompson, 1995). Deconvolution is used to untangle distributions that had been
convolved together under independence. If paired data (ai, ci) were available, it would be
a simple matter to compute the distribution of (bi=ci/ai). But when paired data are not
available, it is generally more difficult to compute the distribution for B and requires a
deconvolution. Except in special cases, using Monte Carlo instead of deconvolution will
yield a wrong answer.

In a few special circumstances, it may be possible to approximate a deconvolution
using Monte Carlo methods. For instance, in the case where we know that C=A+B and A
and B are independent, we can estimate B as C A if we use a correlation between A and C
of r=sA/sC where sA and sC are the observed standard deviations of the respective
distributions. This approach is precise for large number of replications provided that all
the distributions are normal and provided that the sampling algorithm simulates Pearson
correlation (Scheuer and Stoller, 1962). It should be mentioned that Crystal Ball
(Burmaster and Udell, 1990) and @Risk (Salmento, Rubin, and Finkel, 1989; Barton, 1989)
both simulate Spearman’s rank correlation between deviates, and several other
commercial software tools have no provision for simulating correlations at all. It should
also be emphasized that distributions that are neither normal nor lognormal often arise in
risk analysis problems.

×
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In many circumstances, a simple trial-and-error approach (Ferson, 1995) may be
adequate for approximating deconvolution. This approach is based on the idea that the
mean obtained by Monte Carlo assuming independence will be approximately true but the
spread of the distribution needs correction. An iterative process may be able to find a
solution that works reasonably well.

Deconvolution is required in many risk analysis problems. One important area is
remediation planning to compute the cleanup levels that will be sufficient to yield a
planned level of protection (Burmaster, Lloyd, and Thompson, 1995; Burmaster and
Thompson, 1995; Ferson, 1995). Of course, deconvolution is not always required in
regulatory planning, but it has many applications in this area and in other kinds of
problems throughout risk analysis. For instance, suppose we define the risk of some
carcinogen to be the product of its potency for an individual and the dose that individual
receives. Dose and potency might be independent of one another if the former depends
on behavior and the latter on physiological health. Certainly, risk is dependent on both
dose and potency as they are what determine it. Suppose we can estimate the distribution
of dose from measurements of urinary metabolites and can estimate the distribution of risk
from published mortality data. How might we go about estimating the distribution of
potency in a population? This problem is exactly analogous to the seventh exemplar
problem, where dose is A, potency is B, and risk is C. Using ordinary Monte Carlo with
its implicit assumption of independence would yield a incorrect result.

Note that if we had paired data on risk and dose for exposed individuals, we could
have correctly estimated the distribution of the potency factor, simply by forming a
histogram of the quotients of the pairs. It is the ignorance about which individual risk
comes from which dose that trips us up and invalidates the use of a Monte Carlo
simulation using division and independence to estimate the potency factor.
Unfortunately, such individual-based data are often expensive or even impossible to
collect. In this case, the nature of mortality data prevents us from measuring risk for a
particular individual, so we cannot generate pairs of dose and risk for individuals. The
circumstance of having only information on marginal distribution is probably the usual
case in many risk analyses.
IV. MONTE CARLO CANNOT YIELD AN ANSWER UNLESS MUCH IS KNOWN

By this point, it should be clear that Monte Carlo methods require a great deal of
information to yield answers. There are three corollaries of this general observation
embodied in the last three exemplar questions. They might be expressed as

1. Monte Carlo methods cannot yield an answer when the statistical
dependencies among the variables are unknown or uncertain.

2. Monte Carlo methods cannot yield an answer when input distributions
are unknown or uncertain.

3. Monte Carlo methods cannot yield an answer when the model structure
is unknown or uncertain.

Surprisingly, these limitations seem not to have restrained risk analysts from using Monte
Carlo methods even in the absence of formally sufficient knowledge. Of course, the
analyses do not escape the limitations. If the requisite information is not provided by
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empirical study, it must be present in the form of assumptions, whether explicit or only
implicit. It is an important question then as to how incomplete knowledge will affect the
reliability of the assessments analysts make using Monte Carlo methods.

The eighth exemplar problem in which the joint distribution of the variables is
unknown or uncertain arises very commonly in real risk and safety assessments (Smith
and Watson, 1980; Ferson, 1994; Bukowski, Korn and Wartenberg, 1995; Ferson and Long,
1995). Indeed, the case for which sufficient data has been collected to estimate a joint
probability distribution well is very unusual. Fortunately, methods are available to
compute bounds on distributions of arithmetic combinations using only marginal
distributions, without making any assumption about the dependencies among the
variables (Williamson and Downs, 1990; Ferson and Long, 1995). In many cases these
bounds will be optimally narrow, and variables which are known to be independent may
be involved in the risk expression as well. As mentioned above, however, the case in
which partial information is known about the dependence between variables has not been
solved. There is currently no way to compute optimal bounds when some but not all
specifying information is known about the dependence or when the correlation is known
to be a certain value or to lie within some interval.

The ninth exemplar problem generalizes the first problem in that input distributions
are unknown or uncertain. In the first problem, very little information about the input
distributions was available. The more general situation, however, is that some
information, and maybe a lot, is available that characterizes the input distributions but it is
not enough to specify the distributions precisely. Because standard probabilistic
assessment including Monte Carlo requires the selection of particular, well-specified
probability distributions as inputs even when available empirical information does not
justify such specificity, various strategies have been proposed to get around this problem.

One approach to the problem is to use the maximum entropy criterion (Jaynes, 1957)
to define the distribution using whatever information is available about the variable. The
strategy is to specify the distribution having the largest Shannon-Weaver entropy that is
consistent with the available knowledge which forms constraints on the possible shapes.
Thus, this approach makes no shape assumptions yet allows one to select the input
distribution in an optimal way using only limited information about the variates. For
instance, the criterion selects a uniform distribution when only upper and lower bounds
on values are known, an exponential distribution when only a lower bound and the mean
are known, and a normal distribution when only the mean and standard deviation are
known. If other population statistics are known about the variates, the maximum entropy
criterion can be used to derive a solution. Lee and Wright (1994) suggest how the criterion
can be used in risk analysis.

As we mentioned above, however, the use of the maximum entropy criterion is often
criticized. The approach confounds an analyst’s uncertainty with stochasticity of the focal
population. While a subjectivist interpretation of probability finds no fault with this, in
risk analysis it is often considered objectionable, especially when the analysis is conducted
by regulatory authorities (inter alia Vesely et al., 1981; also see Feller, 1968; Fisher, 1973).
There are other methods that can be used to solve problems like the ninth exemplar,
including second-order Monte Carlo simulation (Fisher, 1957; Good, 1965; Iman and
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Helton, 1985; 1991; Helton, 1994), robust Bayesian analysis (Huber, 1980; Wasserman,
1990; Walley, 1991) and probability bounds analysis (Ferson et al., 1996). All of these
methods accept and propagate the uncertainty about the input distributions through the
assessment calculations.

The tenth exemplar problem in which the model itself is unknown or uncertain
represents a profound but ubiquitous difficulty in risk analysis. Examples in human
health are cancer risk assessments in which the appropriate model for low-dose
extrapolations of dose-response information is questionable. Examples in ecological risk
assessment include extinction risk analyses for endangered species in which the best
model of density dependence relating changes in vital rates to population size is unknown.
In both cases, there are several functions with different kinds of nonlinearities that are
traditionally used, but without careful and specific study of the underlying biology, an
analyst cannot be sure about which model should be used. As might be anticipated,
however, the choice can make a big difference. Cullen (1995) explored the consequences
on the final result of using different models in a risk assessment. Mosleh and Bier (1992)
considered the somewhat more abstract problem of selecting the level of aggregation at
which to build a model for use in a risk analysis.

There is very little agreement about how uncertainty about the form of the model
should be handled. Some argue that the uncertainty should be averaged into the process
in a way very similar to how parametric uncertainty is treated. For instance, Holland and
Sielken (1994) have argued that it is reasonable to average the results from different
models, weighted by the respective evidence each one has supporting its claim as the
truth. Sometimes this weighting degenerates to tallying supporters for the models, or
counting numbers of papers published on either side of a debate, as though popularity
were a measure of truth.

Others disagree with this approach, suggesting it is nonsensical to average the
results of mutually exclusive theories (e.g., Morgan and Henrion, 1990; Committee on Risk
Assessment of Hazardous Air Pollutants, 1994; Finkel, 1995). Both probability bounds
analysis (Ferson et al., 1996) and second-order Monte Carlo simulation (Iman and Helton,
1985; 1991) have the potential to handle model uncertainty comprehensively if there are a
finite number of models to choose from, although the latter grows in complexity
combinatorially as the number of choices about model form increases.
DISCUSSION

Like any analytical tool, Monte Carlo methods can yield incorrect or unjustifiable
results whenever their assumptions are false or are not justified empirically. The diverse
problems exemplified above are the result fundamentally of two basic kinds of mistakes:
(1) using precise distributions without empirical justification, and (2) inappropriate
modeling of dependencies among variables. Although it is obvious that improper use of
precise distributions and independence assumptions is the fault of the analyst rather than
the analysis, it is also fair to say that Monte Carlo analysis, and indeed probability theory
in general, would not be of much practical use without such assumptions. These issues
have long been recognized. As Jaynes (1957, page 622) noted, ‘‘This problem of
specification of probabilities in cases where little or no information is available, is as old as
the theory of probability.’’ Whittaker (1990, page 23) explained, ‘‘Independence is

11



cemented into the very foundation of probability theory: it is a theme that recurs in the far
frontiers of research, and one that permeates all applications of probability to scientific
investigation.’’

Moreover, the discrepancies between the Monte Carlo results and the more
comprehensive solutions to the exemplar problems should not be dismissed as trivial or
unimportant. In some cases, the Monte Carlo result may be approximately true; in other
cases, it may be decidedly far from the truth. But either way, it is important for risk
analysts at least to know the formally correct solution to a problem even if it is not used
every time. Moreover, there emerges an issue of good professional practice. As a general
rule, analysts should not make unjustified assumptions merely for the sake of
computational convenience. Risk assessments should not be back-of-envelope
calculations. Whatever is known empirically should be stated explicitly and, to the fullest
extent possible, no further assumptions should be made merely for the sake of making
calculation easier. Whenever further assumptions are necessary to tame an otherwise
intractable problem, they should be discussed explicitly in the assessment documentation
and it should be emphasized that this is their justification.

All of the arguments in this paper rest on the presumption that risk analysis should
be based on a frequentist conception of probability. This may be a controversial
presumption, so some discussion about it is in order. Among probabilists, the frequentist
interpretation of probability has been largely abandoned. Most hold that probability
theory is not the mathematical science of frequencies, despite the widespread popular
view that it is, and notwithstanding the occasional protestation that it ought to be from
empirical scientists (e.g., Rowlinson, 1970). Jaynes (1979) likened the assertion that
probability measures frequencies to someone claiming, 500 years after Columbus, that the
world is flat. Most theorists consider probability theory a calculus of subjective
uncertainty, which is to say the uncertainty of some analyst rather than the objective
variation that exists independent of humans (see Morgan and Henrion, 1990). Neapolitan
(1992) cogently explains the divergence of frequentist and subjectivist interpretations over
the history of probability theory and explains why the subjectivist view has come to
dominate the field.

The now-out-of-favor frequentist interpretation holds that probability is a measure
of the frequency of an event occurring. Under this strict interpretation, probability theory
can only be applied when the events can, at least in principle, be repeated, and it depends
on the idea of a statistical ensemble. For unique situations, where there is no ensemble
and repetition is not possible, this interpretation cannot be made. Morgan and Henrion
(1990, page 49) assert, ‘‘[the frequentist interpretation] renders the theory of probability
virtually inapplicable to real-world decision making, outside games of chance involving
dice or cards.’’

The subjectivist interpretation holds that probability is a measure of a person’s
subjective belief that an event will occur. While observed frequencies will often be useful
in establishing values for probabilities, subjectivists argue that it is silly to restrict
probability theory to only those problems that admit frequentist interpretations when it is
clearly useful in a far wider range of problems. Subjectivists believe that all probabilities
are conditional on available information which may be different for different people. For
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instance, while most spectators at a horse race might regard the probability of a particular
unfavored horse’s winning as low, the probability of this event is much different for a
person who has just fixed the race.

The logical conclusion of this idea is that there is no such thing as a true probability
distribution that is an attribute of the physical world. This is an extension of de Finetti’s
(1974) idea that probability does not exist as an objective quantity and only has meaning as
a characterization of subjective feelings of uncertainty. Frequencies are only useful in
informing these feelings and for estimating probabilities. One of the results of this, as
Savage (1954; 1971) and others have argued, is that there is no distinction to be made
between frequency and uncertainty due to ignorance (cf. Hoffman and Hammonds, 1994).
Probability is probability, and probability includes both forms of uncertainty.
Consequently, attempts by risk analysts to distinguish the two are regarded as misguided.
Kyburg (1989) showed that all second-order formulations that would treat variability and
lack of knowledge separately are unnecessary under a subjectivist interpretation and
should not be conducted.

Despite the attraction of being able to use probability theory in much wider contexts,
it seems that there are some problems that require a purely frequentist interpretation. For
instance, in applications of risk analysis, especially for problems in public health or
environmental protection, it does not seem prudent to convolve an analyst’s subjective
feelings into an analysis, no matter how well trained and nobly motivated the analyst may
be. Although we are obviously keen to include whatever dependable information exists
about a problem in the analysis, the purpose of risk analysis as it is applied to, say, public
health issues is not to compute expectations based on the subjective knowledge of an
individual analyst. The knowledge and uncertainty of one analyst might, and should, be
different from those of another. What relevance for a risk analysis could there be in an
analyst’s beliefs, as distinguished from any evidence he or she has collected? Why should
anyone’s beliefs be muddled with objective scientific information? The manipulation of
such beliefs could only result in a formal calculation of suspicions, rather than true
frequencies of adverse events.

If probability theory is not the mathematical science of frequencies, then perhaps risk
analysis should be given this duty. One need not assert that all forms of uncertainty can
be expressed in terms of precisely known frequencies. Nevertheless, Morgan and
Henrion’s pessimism on the issue seems overwrought. Just because quantitative aspects
of probabilistic events are unknown does not mean that we must use subjective estimates
for them. We can objectively bound our ignorance using the ordinary methods of science.
It is clear that an approach based fundamentally on frequencies but generalized to admit
bounded ignorance about them can serve as the mathematical underpinning of a risk
analysis with wide applicability. It may be of practical interest to use beliefs in secondary
‘what-if’ analyses and this use is perfectly reasonable. It is important, however, to
carefully distinguish cases when subjective estimates are employed from those that
purport to summarize the state of empirical knowledge.
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FIGURE 1. Monte Carlo estimate for distribution of the product in the first exemplar
problem.

0 0.04 0.08 0.12 0.16 0.2 0.24 0.28

AB

P
ro

ba
bi

lit
y 

de
ns

ity

19



FIGURE 2. Bounds (solid lines) on the cumulative distribution function of the product in
the second exemplar problem and the Monte Carlo estimate (dotted line) assuming a
uniform distribution for A.
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FIGURE 3. Bounds (solid lines) on the complementary cumulative distribution function,
and the Monte Carlo estimate (dotted line) assuming independence, for the product of two
lognormal random variables A and B specified by parameters in the third exemplar
problem.
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FIGURE 4. Discrepancy between the true distribution (solid line) and the estimate
computed using Monte Carlo (dashed line) for the seventh exemplar problem.
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