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Abstract 

An important part of processing elicited numerical inputs is an ability to quantitatively 

decode natural-language words that are commonly used to express or modify numerical 

values.  These include ‘about’, ‘around’, ‘almost’, ‘exactly’, ‘nearly’, ‘below’, ‘at least’, 

‘order of’, etc., which are collectively known as approximators or numerical hedges.  

Figuring out the quantitative implications of these expressions for the uncertainty of 

numerical quantities is important for being able to understand, for example, what is 

actually being reported by a patient who says a headache has lasted for “about 7 days”, 

and how we should translate the patient’s report into uncertainty about the duration. We 

used Amazon Mechanical Turk to empirically identify the implications of various 

approximators common in English.  To evaluate the numerical range implied by each 

approximator, we analyzed paired statements differing only in the approximator used in 

numerical expressions.  Despite often considerable diversity, there were several 

statistically significant findings, but far less quantitative variation implied by the 

approximators than might have been expected.  The numerical implication of different 

approximators interacts with the magnitude and roundness of the nominal quantity.  This 

investigation strategy generalizes easily to languages other than English. 

 

Keywords 

approximator; linguistic expression of uncertainty; hedge; Amazon Mechanical Turk; 

elicitation; uncertainty communication 



 2 

Introduction 

The innate numerical acuity of humans is remarkably poor (Dantzig 1930).  Although 

recognizing and thinking with numbers may involve multiple cognitive systems that are 

not yet fully understood (cf. Burr and Ross 2008), laboratory and field observations show 

that without tutoring people typically have a number sense that can distinguish only up to 

about four items (Ifrah 1985). Human societies that have not developed number systems 

or at least finger counting have difficulty discerning the quantity four (Gordon 2004), and 

humans seem to innately distinguish only the quantities one, two and many, which 

represents any quantity more than two.  

 

Number systems were invented repeatedly in human history (Ifrah 2000), apparently to 

facilitate commerce, to bring clarity to ideas otherwise expressed by words like ‘some’, 

‘many’, ‘more’, ‘less’ and ‘fewer’.  These systems permit the description of quantities 

with expressions consisting of a numeral and units.  The units specify the scale of 

measurement, which is either a count noun (e.g., dollars, days, chairs, bushels, people, 

acres), or what linguists call a measure word used with a mass noun (e.g., kernels of corn, 

bushels of wheat, liters of water, tanks of gas, rooms of furniture).  The numeral 

represents an integral count or real-valued measurement revealing the multiplicity or 

fractionality of the unit equivalent to the quantity being described.  The numeral 

expresses a magnitude, possibly spelled out in words (‘one’, ‘two’, ‘sixty-eight’, ‘three 

quarters’, etc.) or expressed with numerical digits (‘1’, ‘256’, ‘0.5’, etc.). 

 

The clarity of number systems often implies greater precision than is practically 

achievable in many situations.  This fact requires some scheme to relax or discount this 

precision.  In linguistics, a hedge is a word or phrase that modifies the force or precision 

of ideas or statements (Lakoff 1973). Hedges serve several purposes in language, 

including expressing uncertainty or transience, stipulation, responsibility focusing, and 

obfuscation. Prince et al. (1982) recognized two kinds of hedges: shields and 

approximators. Shields, such as ‘I think’ or ‘probably’ modify propositions, whereas 

approximators modify numerals to alter the magnitude or precision implied by the 

expression. The latter function of approximators is to convey that the quantity is either 

less precise or more precise than the meaning of the corresponding numerical quantity 

without the hedge word. For instance, the sentence ‘About 105 people came to the party’ 

may mean that any number of people between 100 and 110 came to the party.  In 

contrast, the sentence ‘105 people came to the party’ has a smaller range of possible 

values for the implied number of people attending the party. In this case, the 

approximator ‘about’ introduces more uncertainty into the interpretation of the sentence.   

 

Sometimes uncertainty is implicit in a numerical expression because of the roundness of 

the number even though no explicit hedge words may be present at all.  For example, a 

reasonable interpretation of the phrase ‘1,000 people came to the protest’ would infer that 

the number of people who attended the protest is somewhere in the neighborhood of 

1,000, but not necessarily exactly 1,000. Comparing that example to a phrase ‘Exactly 

1,000 people came to the protest’, one can see that the hedge ‘exactly’ reduces the 
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uncertainty of the statement: the latter example means that there were exactly 1,000 

people at the protest, no more, no less. 

 

In English, quantities are described with expressions generally involving three elements:  

unit, numeral, and approximator.  Grammatically, the approximator is an adverb that 

modifies the numeral which is an adjective which in turn modifies the unit which is a 

noun.  The order in which the three elements appear is not fixed in English.  For example, 

the written phrase ‘$100 or so’ is unit numeral approximator, but ‘nearly 5 pounds’ is 

approximator numeral unit, and ‘35 years or more’ is numeral unit  approximator.  

Sometimes elements may be elided when context or convention allows.  The phrase 

‘three coffees’ omits the unit (measure word) ‘cup’.  Mathematicians discuss abstract 

quantities which are pure, dimensionless numbers without units.  The idea is not so much 

that there are no units, but that the numbers represent quantities with any units.  When the 

numeral is omitted, it is usually understood to be one, unless context forces another 

value.  Omitting the approximator element—using what we might call the null hedge or 

null approximator—does not usually mean there is no imprecision whatever about the 

quantity.  Instead, the value is understood to have a precision implicitly encoded in the 

roundness of the number, the discourse environment (e.g., bank statements versus 

barroom braggadocio), and measurability of the quantity. 

 

There are many approximators in English, including generic hedges such as ‘around’ and 

‘nearly’, archaic hedges such as ‘well-nigh’, and idiomatic constructions such as ‘in the 

ballpark of’.  Some hedges generally appear before the numeral like ‘around’ and ‘as 

many as’, and some generally appear after the numeral like ‘or so’ and ‘and change’.  

Some approximators can appear either before or after the numeral like ‘approximately’, 

‘almost’ and ‘at least’.  Table 1 lists many approximators in wide use which are 

distinguished into four categories.  Channell (1994) asserted that all of the approximators 

imply a range of possible values for the quantity being described.  Sometimes this 

interval is explicitly indicated with ranging constructions like ‘5 or 6’ and ‘15 or 20’ and 

‘between 86 and 94’, but many hedged numerical expressions refer to a single exemplar 

number, about which the interval of imprecision is understood to be symmetrically or 

asymmetrically positioned around this value.  For example, ‘around 5’ is symmetric, 

whereas ‘more than 5’ is asymmetric.  The null approximator is in a category by itself. 

 

Sadock (1977) argued that approximators but also many other factors affect the implied 

imprecision about a quantity.  From introspective linguistic analysis of pairs of natural-

language expressions such as   
 

1 million 990,000 

about 1 million 1 million 

about 990,000 990,000 

about 1 million about 990,000 

about a dozen about 12 

about two and a half about 2.5 

six-foot insect  six-foot man 
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where the value on the left is understood to be less precise than the value on the right, he 

concluded that the roundness of the number mentioned, its display format, the possible 

range of the quantity, the relevant standards of precision, and the units themselves 

including whether they refer to discrete entities or mass nouns all affect the implied 

imprecision about a quantity.  Sadock (1977) was so vexed by the effects of context that 

he concluded that linguistic vagueness could not be effectively decoded into rules 

governing the meanings of approximators. 

 

Table 1. Linguistic approximators of various kinds 
Null 

 [] 

 

Symmetric 

about  

above  

almost  

approximately  

around  

as good as  

a total of 

ballpark  

bordering on  

close to  

essentially  

exactly  

for all practical purposes  

for the greatest part 

give or take  

in effect  

in the ballpark of  

in the neighborhood of  

in the vicinity of  

just about  

more or less 

near  

near to  

nearly  

nigh  

not far from  

on the order of 

or so 

or thereabout(s) 

order 

practically  

precisely 

pretty much  

pretty near(ly)  

roughly  

round about  

virtually  

well-nigh  

within sight of  

etc. 

Asymmetric 

above  

almost 

all but  

and change 

and some 

as high as 

as low as  

as many as 

at least 

at most 

below 

bordering on 

close to 

down to 

fewer than 

less than 

smaller than 

more than 

no(t) fewer than 

no greater than 

no larger than 

no less than 

no more than 

no smaller than 

not quite  

on the brink of  

on the edge of  

on the point of  

on the verge of  

over 

up to 

virtually 

etc. 

 
 

Ranging 

at least x but no larger than y 

between x and y 

between x and y, inclusive 

x or x+1 

ax or a(x+1) 

x to y 

within x (units) of y 

etc. 
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Speakers and writers use approximators frequently, especially when they are being 

careful and trying to be truthful (Prince et al. 1982).  They arise commonly in expert 

elicitations, medical case histories and patient complaints recorded by health care 

professionals, text analyses, and legal or linguistic interpretations of discourse and 

testimony.  It seems intuitively clear that using an inappropriate approximator can 

convert a truthful or correct statement into an untruthful or incorrect one.  Thus, to wring 

from natural-language inputs the full import that they convey without misreading those 

inputs, it is essential that we understand these approximators quantitatively so we can 

properly interpret elicited numerical values.  Decoding approximators provides a key 

insight into the uncertainty expressed through natural language and its quantitative 

analysis benefits elicitation, communication, reasoning, and inferences based on hedged 

numerical values.  Analysts of information expressed in natural language need to be able 

to interpret approximators quantitatively to appreciate the uncertainties expressed in 

speech and text.  In this paper, we empirically quantify the numerical meanings of several 

common approximators, and describe their variations among individuals. 

 

It would be advantageous to use approximators to encode the uncertainties estimated by 

risk analyses and similar numerical calculations into natural language for use in risk 

communication to humans.  Scientists and engineers have long been taught to use only 

significant digits in reporting their numerical results so as to not inadvertently imply 

more precision about a conclusion than is warranted (Serway 1990; Zumdal and DeCoste 

2011), and they may assume that decision makers implicitly understand this convention.  

Yet we know that the significant-digits convention, in which for example ‘1.23’ is 

interpreted as the interval range [1.225, 1.235], is inadequate to express large 

uncertainties.  There is no single number that can express the uncertainty of [10, 16], nor 

even the narrower uncertainty of [14.8, 15.6].  Figure 1 depicts a part of the half-plane of 

all possible real intervals [Left, Right].  Every possible interval range corresponds to a 

point on this plane above the forty-five-degree line.  But only the corners of the triangles 

depicted in the figure can be exactly represented by a scalar number under the significant-

digits convention, and only interval ranges corresponding to points inside these triangles 

can even be enclosed by the intervals implied by scalar numbers under the significant-

digits convention.  Because the results of risk analyses can often result in uncertainties 

larger than can be expressed under this convention, scientists and engineers perhaps 

should also use approximators to form verbal characterizations that express the 

uncertainty of their numerical estimations if these can better or more naturally be 

understood by their audience, or at least by linguistically competent speakers of English 

in that audience.  Of course risk communicators, and expositors of scientific and 

technical information generally, already do use approximators in their explanations, but it 

is not clear that they use them in the best or most robust way.  Quantitative study of 

approximators and their implications may help to fashion guidance for more effective risk 

communication that is less prone to misunderstanding. 
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Figure 1.  Intervals of the form [Left, Right] that can be represented by a scalar number 

under the significant-digit convention (corresponding to the top-left corners of each 

triangle) and intervals that can be enclosed under that convention (corresponding to the 

triangles) on the half-plane of all real intervals.  Different sized triangles represent 

different numbers of significant digits of the scalar number.  

 

One way to develop a system for decoding and encoding uncertainty from and into 

approximators is an Aristotelian prescriptive approach in which scientists adopt technical 

meanings for some hedge words and turn them into jargon.  This approach would simply 

assign quantitative meanings to various approximators based on ideas and rules 

conceived by experts or conventions.  Such a prescriptive approach could be made to be 

internally consistent and to have properties that make the resulting system most useful in 

practice.  For instance, a designed system could ensure that all uncertainty ranges can be 

conveniently represented in the system.  Such completeness cannot be guaranteed if we 

restrict ourselves to the available approximators in natural language.  In fact, various 

schemes applying technical meanings to English uncertainty words have been proposed 

by scientists several times in the past.  For example, the Intergovernmental Panel on 

Climate Change recently defined ‘very likely’ to mean having probability between 90% 

and 99% (Solomon et al. 2007).   

 

Astronomers have likewise developed a scale converting between quantitative probability 

for impacts of near-Earth orbiting asteroids and English expressions (Binzel 1997) in 
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which, interestingly, risks with 100-year cumulative probability lower than 10
8
 have a 

likelihood of collision optimistically characterized as ‘none’.  Weiss (2003) suggested 

extending legal definitions of standards of proof to characterize scientific statements 

according to eleven levels of certainty.  Kent (1964) suggested formalizing the meanings 

of hedges used in intelligence briefings to prevent misunderstanding of “poetic” language 

such as ‘serious possibility of an invasion’.  His scheme identified ranges of probabilities 

with English expressions: 
 

100%   certain 

(93  ~6)%  almost certain 

(75  ~12)%  probable 

(50  ~10)%  chances about even 

(30  ~10)%  probably not 

(7  ~5)%  almost certainly not 

0%   impossible 
 

This scheme was not complete in that, for example, a probability of 15% was not covered 

by any phrase, and it was criticized by his contemporaries as an imposition of bogus 

precision onto language.  Wallsten et al. (1986) revisited the quantification of vague 

probability terms using a fuzzy-sets approach.  

 

In fact, there have been innumerable other Aristotelian schemes to quantify the 

uncertainty expressions of natural language (e.g., Bonissone and Decker 1986; Delgado 

et al. 1998), but these definition systems are almost never broadly accepted even within a 

discipline, much less beyond a narrow technical field.  There are two notable exceptions.  

The World Conservation Union specifies a “critically endangered” species to be one with 

a probability of extinction of at least 50% within 10 years, and a “vulnerable” species to 

have a 10% probability of extinction within 100 years (Mace and Lande 1991).  The most 

famous exception was Ronald Fisher’s suggestion that statistical findings in hypothesis 

testing with probability of 5% or less be called “statistically significant”.  Such schemes 

are usually created for the sake of convenience, but they can be especially useful in legal 

and regulatory settings, because they translate quantitative results into qualitative 

categories.  These systems have disadvantages, including susceptibility to the sorites 

paradox, and suboptimal decisions in contexts where gradation or vagueness is 

misrepresented by bright lines (Zadeh 1965; Giles 1982; Smithson and Smithson 1987) . 

0 10 20

mathematical

exactly

(significant digits)

about

count

around

6 7 80 10 20

mathematical

exactly

(significant digits)

about

count

around

6 7 8      0 10 35

atmost

atleast

order

below

above

over

almost

6 7 80 10 35

atmost

atleast

order

below

above

over

almost

6 7 8  

Figure 2.  Symmetric (left) and asymmetric (right) approximators of the number 7.  
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As far as we know, no one has proposed an articulated system to quantitatively define 

approximators, but it is easy to imagine one.  Indeed, there are many ways to construct 

one based on magnitude of the exemplar number or its number of significant digits.  For 

instance, consider the scheme illustrated in Figure 2 (different heights are used only to 

disambiguate the several ranges but are otherwise meaningless).  This system of 

decodings reflects a belief that all numerical quantities in the real world have 

uncertainties.  The default interpretation of an explicit scalar number x with the null 

approximator is the interval implied by the decimal place of its least significant digit.  So 

the expression ‘7’ is interpreted as [6.5, 7.5].  The ‘about’ approximator quadruples the 

width of this interval, and the ‘around’ qualifier increases the width by a factor of twenty.  

Even the phrase ‘exactly 7’ is interpreted as [6.9, 7.1], which is something less precise 

than ‘7.0’ with no approximator, which would be interpreted as [6.95, 7.05] under the 

significant-digit convention.  This system requires the new approximator ‘mathematical’ 

to describe numbers that are precise to infinitely many decimal places, as would be 

needed for the 2 in a square function.  The definitions of these approximators are given in 

the table below, where d is the decimal place of the last significant digits of x.  So, for 

instance, if x is 7, d is zero.  If x is 7.0, d is 1, and if x is 700, d is 2.  Nonsignificant 

digits are stripped away from x before the approximator function is applied. 

 

 Hedged numerical expression Interpretation 

 mathematical x x 

 exactly x x  10
(d + 1)

 

 x x  0.5  10
d
 

 about x  x  2  10
d
 

 around x  x  10  10
d 
 

 count x x  x 

 almost x [x  0.5  10
d
, x] 

 over x [x, x + 0.5  10
d
] 

 below x  [x  2  10
d
, x] 

 above x [x, x + 2  10
d
] 

 at most x [0, x], or [ , x] 

 at least x  [x, ]  

 order x [x/2, 5x] 

 between x and y [x, y] 

 

Note that some hedges are based on the number and position of significant digits used to 

express the quantity, while some are based solely on the magnitude of the quantity.  The 

system is complete in the sense of being able to represent any given interval range 

because it supports the ‘between’ approximator.  The characterizations can be 

compounded so that, for instance, ‘at most about 300’ would be the interval [0, 350].  The 

system can be extended in other obvious ways to handle points in time and temporal 

spans with approximators like ‘since’, ‘until’, ‘-ish’, and ‘on or about’, although the use 

of the sexagesimal number system and the modulo-twelve clock scale also makes time 

rather different from quantities expressed in a decimal system on a linear scale with 

respect to how uncertainty is typically encoded.   
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Whatever the possible advantages of such an artificial system, because it would be 

imposed by fiat, it could only at best achieve the status of jargon.  The wide adoption of 

this or any system originating in scientific convention or perhaps government regulation 

would require buy-in and on-going broad education among would-be users to be 

successful.  Of course, we have little reason to believe that such a prescriptive system 

such as that proposed in Figure 2 is the best or most appropriate system that could be 

devised for interpreting and forming numerical expressions in English.  There are 

alternative interpretations and various possible decoding schemes.  Even among the 

authors of this paper, multiple competing systems were conceived and championed.  

Long-standing scientific convention about interpreting the uncertainty from a naked 

scalar number is not universally observed.  For example, Schulte et al. (1997) suggest 

that the unqualified expression ‘2.31’ should be interpreted as [2.30, 2.32], and some 

authors argue compellingly against trying to use significant figures to express uncertainty 

at all (e.g., Denker 2011). 

 

In this paper, we adopt an alternative descriptive approach to developing a way to decode 

and encode approximators that characterize uncertainty in numerical expressions in 

English (Channell 1980; Wallsten et al. 1986).  In this Galilean approach, the quantitative 

meanings of various approximators are empirically quantified to reflect how native 

language users interpret them.  What does it actually mean when someone says a phrase 

like ‘about 140’?  Is it substantially different from what is implied by the similar phrase 

‘about 143’?  Is it related to what is meant by the phrase ‘about 143.26’?  Does ‘about’ 

denote a tighter or broader range than various other approximators?  When their 

uncertainty is a particular interval, what ballpark scalar number do humans typically 

select to represent it?  Does the behavior change when the uncertainty represents actual 

variation rather than epistemic uncertainty or ignorance per se?  Does the result change 

when the variability is expressed in time, across space or among individuals or 

components?  We expect a lot of variation among individual respondents about these 

questions.  We also expect, as Sadock (1977) argued, that context will often be important.  

Different natural languages must be studied separately.   

 

Channell (1994; 1983; 1980) appears to have been the first to try to quantify the 

implications of approximators. She found that, for almost all her informants, the 

approximators were interpreted as denoting continuous intervals (or sequential integer 

ranges) of possible values, invariably including the exemplar number.  She collated 

histograms of the breadths of these intervals for the approximators ‘about’, ‘around’, ‘or 

so’, ‘not less than’ and ‘x or y’.  Her quantitative results suggest there are differences 

between approximators but also substantial differences between informants, even for a 

small sample size of 26 informants.  The minimum and maximum lengths of these 

intervals, expressed as percentages of the exemplar number, varied by a factor of about 

three among her small sample. 

 

We collected some preliminary data from native and non-native speakers of English in 

the United States about the implication of approximators using traditional direct 

questionnaires distributed to students (which was also Channell’s approach).  

Unfortunately, this method of interrogation is inefficient and tiresome, and even dizzying 
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for the informant.  It turns out to be quite difficult to ask enough people enough questions 

to nail down a distributional characterization of the quantitative meanings of the hedges.  

Fixed questions in static questionnaires are also highly susceptible to psychometric 

artifacts from cognitive biases such as anchoring.  Obviously, the questions need to be 

randomized and the contextual numbers that are modified by the hedges should be varied 

to obtain general results. 

 

Materials and Methods:  Amazon Mechanical Turk 

We used Amazon Mechanical Turk (MTurk) to collect data about the meanings of 

approximators in English.  Amazon Mechanical Turk is an Internet marketplace that 

allows requesters to crowdsource tasks to workers (or turkers) over the Internet. The 

tasks are posted by requesters on the Amazon Mechanical Turk Website, Sample tasks 

which can be commonly found on MTurk include answering questions, tagging images 

and videos, searching for relevant information on the Internet, etc. In MTurk 

terminology, tasks are known as human intelligence tasks, or HITs, as they usually 

require human intelligence, and cannot be accomplished by a computer. 

 

Requesters pay to workers a set fee for performing a HIT upon approving the results of 

the task. If the result of the HIT is rejected by the requester, the worker receives no 

compensation, and the task remains incomplete, and can be performed by another worker.  

Requesters upload the list of questions/tasks to the MTurk website, and workers can 

choose from the list of various HITs which ones to perform. The requester can specify 

certain qualifications for workers such asnative language, country of residence, minimal 

approval rate, i.e. the percentage of their completed tasks that were approved by the 

requester, or the total number of tasks approved.  

 

Reasons for choosing MTurk as a platform for conducting the current experiment include 

the heterogeneity of the worker population, low cost, high response rate, and ethical and 

regulatory simplicity. While the population of MTurk is not known to be representative 

of the population of US or the group of people who speak English natively, it however is 

more heterogeneous than any group of people which can be recruited to participate in the 

experiment in academic settings (such as a group of students completing a questionnaire).  

The cost of recruiting workers on MTurk is low.  In a pilot experiment, we paid one cent 

per question to workers.  Thus, for a sample consisting of about 2,500 questions, we paid 

about $25 to workers, plus half of this amount as overhead
1
 to Amazon and received all 

answers in one day.  

 

The size of the MTurk community results in a high response rate to HITs.  In our case, 

answers to about 2,500 questions were collected within 24 hours from making HITs 

available on MTurk.  Because the identity of workers is effectively anonymous, and the 

investigators do not participate in answering the HITs, using MTurk to collect 

                                                 
1
 The overhead to Amazon is max(10%  (per-HIT fee), $0.005) times the number of completed 

and approved HITs. 
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survey/interview data is exempt from the requirement of prior approval by an institutional 

review board under human subjects research regulation in the United States (45 CFR 

§46.101(b)(2) and §46.401(b); 45 CFR §690.101(b)(2); see HHS 2013; NSF 2013). 

 

Experimental statements 

A cache of experimental statements was constructed to control for possible effects of 

magnitude of the nominal value, its number of significant digits, its units, and other 

aspects of the context in which an approximator may be used.  Over 800 statements 

containing numerical values most of which were sourced from the Internet website 

http://facts.randomhistory.com/archives.html which lists sundry historical or popular scientific 

facts by category.  Examples of the original statements are given below, with the 

numerical expressions highlighted in bold: 

 

Haiti’s highest peak is the Pic la Selle at 2680 meters. 

A 14th-century book of Thai poems describes 23 types of Siamese cats. 

Soldiers (hoplites) in ancient Greece wore up to 70 pounds of bronze armor. 

In 2007, a dog named Rocco discovered a truffle in Tuscany that weighed 3.3 pounds. 

Greece enjoys more than 250 days of sunshine a year. 

Bats make up about 20% of all classified mammal species globally. 

 

The statements to be used in the HITs put to MTurk workers were created by altering 

these original statements by randomizing both the approximator and the nominal value 

used in the numerical expression.  The approximator, if present, was removed from each 

statement.  In the examples above, the approximators ‘up to’, ‘more than’, and ‘about’ 

were omitted.  A new approximator was then randomly selected from the test set of 

approximators and inserted into the statement.   

 

The original magnitude specified in each statement was also replaced by a substitute 

number, randomly selected from a set of numbers comparable in size to the original 

magnitude, but varying in its apparent precision.  The set of possible substitutes was 

generated using a function written in Python given in the Appendix.  This function 

produces, for each explicit numeral input, a finite list of values that we might consider to 

be reasonable substitutes for use in the experimental statements so that they vary widely 

in terms of numbers of significant digits and roundness of the nominal value.  The 

function creates the list of substitute values by, for each digit in the input numeral, 

replacing that digit with a random digit, a ‘0’, and a ‘5’, and replacing each digit to the 

right of that one with zeros, to yield three possible alternative values.  Numerals with a 

‘5’ as the last significant digit are held by some (Krifka 2005) to be rounder than similar 

numerals with other nonzero digits in this spot.  Example results from applying this 

function to the inputs on the left below generated the random variation and varying 

number of significant digits in substitute magnitudes on the right. 

 

Input 

246 
Substitute magnitudes 

200, 240, 244, 245, 246, 250, 290, 500 

http://facts.randomhistory.com/archives.html
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1300 

0.74 

23.13 

1000, 1300, 1305, 1309, 1330, 1350, 1400, 1500, 4000 

0.3, 0.5, 0.7, 0.74, 0.742, 0.745, 0.75, 0.76 

23.0, 23.1, 23.13, 23.1305, 23.1307, 23.135, 23.137, 23.15, 23.17, 23.2, 23.5 

 

A number was chosen randomly from the set generated by the function and this number 

replaced the original magnitude in the numerical expression in each statement.   

 

Statements were then manually reviewed to catch and remove nonsensical constructions 

such as ‘500 days a year’ and ‘120% of people’.  But we made no attempt to remove or 

edit statements with constructions that were merely linguistically implausible.  For 

instance, although natural language speakers may only rarely or perhaps never use a 

phrase such as ‘roughly 10,023’ such a phrase would be submitted for interpretation to 

MTurk workers.  For the MTurk experiment, we generated 866 experimental statements 

containing numerical expressions involving an approximator.  To facilitate later statistical 

comparisons, we strove for a balanced design using the same number of experimental 

statements for each approximator, and the same number of statements with units from 

among the following groups: 
 

  discrete (‘people’, ‘dogs’, ‘species’, etc.), 

  money (‘$’, ‘dollars’, ‘cents’), 

  length (‘meters’, ‘miles’, ‘inches’, ‘feet’, ‘inches’, ‘km’, ‘cm’, ‘mm’, ‘m’), 

  weight (‘lbs’, ‘kg’, ‘tons’, ‘ounces’, ‘pounds’, ‘oz’, ‘milligrams’), 

  time (‘years’, ‘minutes’, ‘seconds’, ‘weeks’, ‘days’, ‘hours’), 

  percent (‘%’), and 

  speed (‘kph’, ‘mph’). 
 

Several approximators were considered, including the null hedge, ‘about’, ‘above’, 

‘almost’, ‘approximately’, ‘around’, ‘at least’, ‘at most’, ‘below’, ‘exactly’, ‘nearly’, ‘no 

more than’, ‘no less than’, ‘over’, ‘precisely’, and ‘roughly’.  The complete list of 

experimental statements is available at https://sites.google.com/site/numericalhedging/amazon-
mechanical-turk.   

 

Thousands of samples were collected using multiple interrogation formats.  In the 

primary format, workers were asked to evaluate the ranges implied by hedged numerical 

expressions in paired statements differing only in their approximators.  For each 

statement, they were asked to provide minimal and maximal possible values for a 

quantity described by a phrase extracted from the statement.  Each phrase consisted of an 

approximator, numeral and unit.  For example, workers were shown 

 

Statement: Roughly 25% of Canadians 

are Protestant. 

Phrase:   Roughly 25% 

Statement: No more than 25% of 

Canadians are Protestant. 

Phrase:  No more than 25% 

and asked to provide the minimum and the maximum possible values for the percentage 

of Protestant Canadians.  Each HIT was a bundle of four statement pairs preceded by the 

following thirteen lines of instructions which did not change from task to task: 

 

https://sites.google.com/site/numericalhedging/amazon-mechanical-turk
https://sites.google.com/site/numericalhedging/amazon-mechanical-turk
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Each HIT was answered by 2 different workers before it was retired.  Each statement was 

used in two HITs so as to make it possible to compare the effect of changes to the 

quantity’s magnitude, significant digits, and roundness.  There were 422 HITS  8 

phrases  2 workers  =  6752 minimum maximum ranges.  The experimental results 

were obtained within 5 days after uploading the HITs to MTurk.   

 

Results 

The data downloaded from MTurk were reviewed manually.  When a worker gave a 

maximum that was smaller than the minimum, which happened in only 16 cases, the 

values were swapped in the data set.  We were prepared to interpret missing maximal or 

minimal values as plus or minus infinity or zero, but almost none of the missing values 

could reasonably be interpreted this way, and therefore they were omitted from the 

analysis.  Gross numerical outliers representing potential mistakes or misunderstandings 

were identified, and we conducted parallel analyses with and without these outliers.  A 

result was identified as an outlier when the maximum given by the worker was greater 

than nine times the exemplar value, or when the minimum was less than one ninth of it.  

We chose nine as the factor in order to remove cases where the worker may have 

inadvertently typed an extra or omitted a necessary digit.  Such a slip of the fingers would 

increase or decrease the value by at least ten fold, as might have occurred, for instance, in 

characterizing the maximum of the interval for ‘about 1000’ as 11000 rather than 1100.  

There were 95 such cases.  After data filtering and removing unanswered questions, there 

were a total of 6,038 minimum maximum ranges.   

 

Statistical and graphical analysis of the results was conducted using the R Environment 

for Statistical Computing (R Core Team 2013).  Analysis of variance (anova) methods 

were used to discern the effects of approximators on the implied imprecision of the 

numerical quantity.  Regressions were used to uncover the relationship between the 

uncertainty implied by a hedged numerical expression and various explanatory variables, 

including the approximator used, and the roundness, magnitude and unit group of the 

exemplar number mentioned in the numerical expression.  The magnitude was 

characterized in two ways, first as the actual value of the exemplar number, and second 

as its order of magnitude taken to be the base-ten logarithm of the exemplar number.  We 

computed both the number of significant digits in the exemplar number, and the order of 

significance, which is defined as 10
d
 where d is the decimal place of the last significant 
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digit in the exemplar number.  The number of significant digits in the expression ‘1.3’ is 

2, and order of significance is 0.1.  Roundness was characterized as the base-ten 

logarithm of the order of significance.  The unit group and approximator were both 

categorical variables taking values from the sets above of 7 and 16 items respectively.  

We also included as explanatory variables in the analyses two Boolean variables:  the 

discreteness of the unit (whether the unit group was the discrete category or one of the 

other 6 measureable categories), and whether the last significant digit was a ‘5’.  

Ancillary variables returned by MTurk such as the amount of time in seconds which the 

worker spent on a given HIT or details about the worker were included in exploratory 

regression analyses, but were not found to be statistically interesting.  The dependent 

variables in these analyses were measures of the breadth between the maximum and 

minimum values given by the workers in each case.  We considered five output variables, 

including the range (difference between the maximum and minimum), the based-ten 

logarithm of the range, the relative range (ratio of the range to the absolute value 

exemplar number), and the minimum and maximum in units relative to the exemplar 

number. 

 

Figure 3 shows the relative breadths of all 6,038 reported intervals distributed over 16 

approximators.  The red curves are empirical distribution functions for the left endpoints 

of each interval minus and then divided by the magnitude of the respective exemplar 

value.  Likewise, the blue curves are the same for the right endpoints.  These distribution 

functions form interval-type bounds on cumulative distribution functions called 

probability boxes that depict the relative uncertainties associated with the several 

approximators.  These uncertainties could—but only very rarely do—exceed  absolute 

values of one.  Of the approximators studied, the tightest intervals are associated with the 

hedge ‘precisely’, but those for ‘exactly’ are nearly as tight.  Those for the null hedge are 

a surprisingly close third.  The breadths of ‘about’, ‘around’, ‘approximately’ and 

‘roughly’ are substantially wider, and all quite similar to each other.  The remaining 

approximators are understood to represent asymmetric uncertainties.  Note that for 

several approximators the upper tails of the left bounds in red are actually above the 

exemplar value.  In fact, for both ‘above’ and ‘over’, fully 42% of the left bounds were 

above their exemplar values.  This means, for example, that the phrase ‘above 6.3’ for 

some people implies a range that includes the value 6.3, but for others implies a range 

that does not include 6.3.  This rarely occurs for the other approximators for which in all 

cases less than 1% of the left endpoints exceed their respective exemplar values.  The 

patterns for ‘at least’ and ‘no less than’ seem to be very similar to each other.  The graphs 

for ‘above’ and ‘over’ are also largely similar to one another, but differ from the graphs 

of ‘at least’ and ‘no less than’ because the latter pair almost always includes the exemplar 

value.  Analogous statements can be made about ‘at most’, ‘no more than’, ‘below’ and 

‘almost’, which are effectively transpositions of the previous four approximators. 
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Figure 3.  Relative uncertainty implied by various hedges characterized as empirical 

distribution functions of (m – e)/e, shown in red, and (M – e)/e, shown in blue, where m 

and M are the left and right endpoints of the reported intervals, and e is the magnitude of 

the exemplar value in each numerical expression.  

 

Figure 4 shows the same relative uncertainties in detail for four of the approximators.  

The intervals consisting of left and right endpoints, again scaled as relative displacements 

from the exemplar value of the numerical expression, are plotted as horizontal line 

segments.  The intervals are sorted by their breadths, with the narrowest intervals at the 

bottom and the widest intervals at the top of the graphs.  The graphs in Figure 4 reveal 

which left endpoint is associated with which right endpoint.  As a consequence, we can 

observe the breadth and pattern of specific responses to specific hedges across 

respondents. The graph for ‘about’ and the null approximator are symmetric, with a few 

idiosyncrasies by some workers.  The graph for ‘at most’ is strongly asymmetric.  

Although there are a couple of unusual intervals for this approximator, the graph reveals 

strong conformity about the direction of, and fewer idiosyncratic interpretations of, the 

uncertainty implied by the approximator.  The graph for ‘nearly’ on the other hand 
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reveals both symmetric and asymmetric intervals, the admixture of which seems to 

correspond to semantic ambiguity in this approximator.  This result suggests guidance for 

elicitors.  For example, if an informant uses the approximator ‘nearly’, an elicitor would 

be advised to seek to disambiguate which sense of the word was intended. Similarly in 

automated text mining applications, alternative potential interpretations of a sentence 

including ‘nearly’ as a hedge term could be flagged as more ambiguous than other 

consistently symmetric or asymmetric qualifying terms. 

 
about null at_most nearly

Relative uncertainty

1 0 1

about [null] at most nearly

 
 

Figure 4.  Intervals of relative uncertainty understood by individual workers for several 

hedges. 

 

Uncertainty is commonly understated 

An important consideration is whether people seem to be underestimating the uncertainty 

implied by numerical expressions involving hedges.  We may ask how often workers 

characterize a numerical expression as a zero-width interval, and how often the intervals 

are narrower than would be implied by the significant-digits convention.  The results vary 

sharply among the different approximators, as shown in Table 3 below.  In the table, the 

Zero Width column gives for each approximator the percentage of intervals reported by 

workers for which the left and right endpoint are the same value, indicating a point value 

as the only possible value, and a degenerate interval of width zero.  The Too Narrow 

column gives the percentage of reported intervals which are narrower than would be 

implied by the significant-digits convention applied to the respective exemplar numbers.  

The corresponding sample sizes are shown in the last column of the table. 

 

Zero-width intervals were surprisingly often reported by workers.  This response was 

nearly universal for the ‘precisely’ and ‘exactly’ approximators, with only 3% of 

intervals interpreted to correspond to more than a single possible number, and it was 

nearly as common for the null approximator.  Even more surprisingly, zero-width 

intervals were also occasionally interpreted for the other hedges.  It might seem to defy 

all mathematical sensibility to say that the meaning of “approximately 2300” could not 

entail the value 2302 and must be identical to 2300.000… with infinitely many decimal 

places, but the workers responded this way about 2% of the time.  We thought that such 

responses might arise from a conflict between the semantics of the hedge and the 

discreteness of the units of the value being characterized, such as when a test phrase is 

“approximately 2346 people” which might be interpreted as fatuous hedging because one 



 17 

cannot have a fractional person.  This conflict may explain the zero-width interval 

reported for the expression “approximately 3005 coffee houses”, but does not seem to be 

at play in the majority of zero-width intervals such as those reported for the expressions  
 

 “approximately 25 kg”, 

 “approximately 70 countries”, 

and even 

 “approximately $124000”, and  

 “approximately 10 billion dollars”,  
 

which apparently are interpretations by particularly literal-minded workers. 

 

Table 3. Evidence that uncertainties implied by numerical expressions are 

underestimated 

 Approximator 

precisely  

exactly  

[null]  

about  

roughly  

approximately  

around  

almost 

nearly  

at most  

no more than  

below  

over  

above  

no less than  

at least  

Zero Width (%) 

97 

97 

94 

0 

~0 

2 

0 

2 

2 

0 

1 

~0 

~0 

~0 

1 

1 

Too Narrow (%) 

98 

99 

98 

48 

40 

44 

42 

62 

58 

46 

46 

51 

49 

47 

48 

51 

Sample size 

450 

362 

407 

366 

367 

369 

397 

411 

388 

359 

321 

340 

371 

352 

376 

402 

 

 

Outside of mathematics, perfectly precise numbers are incredibly rare topics in human 

discourse.  All numbers that are actually physically measured, which are essentially all 

numbers that have units other than integer counts or tallies of integer counts, inescapably 

have measurement error (Rabinovich 2000).  It is possible that workers understand this 

fact intuitively yet lack the mathematical background to express this in terms that could 

be captured in the Amazon Mechanical Turk experiments.  

 

Even if we set aside the reports of zero-width intervals, the results are also striking 

because so many intervals are narrower than would be implied by the significant-digits 

convention.  With exceptions perhaps for the ‘precisely’ and ‘exactly’ approximators, the 

interval implied by the significant-digits convention is arguably the logical lower limit on 

the width of an interval of possible values implied by a numerical expression, which arise 

from basic considerations about how precise numbers might have been rounded to form 

the exemplar value.  We had expected that the intervals reported by workers would rarely 
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be narrower than the respective significant-digits intervals.  Thus, apart from maybe the 

first two rows, the percentages in the Too Narrow column are quite surprising in that 

between 40 and 60 percent of intervals are narrower than this limit.  Nearly half of the 

responses to a question asking, for instance, what “about 2300” means specify intervals 

that are narrower than 100, which is the width of the interval [2250, 2350] implied by the 

significant-digits convention.  We had presumed that 100 would be a lower limit on the 

width, because this interval is implied by the structure of the exemplar alone (Bevington 

and Robinson 2002; Zumdal and DeCoste 2011; Rabinovich 2000), before considering 

the semantic implications of the hedge ‘about’ which should only broaden the interval.  

Apparently, this reasoning does not apply in the interpretations of many people. 

 

Regression analyses 

We undertook linear regression analyses to explain the variation observed for the base-

ten logarithm of the unnormalized widths of the intervals reported by workers as a 

function of the magnitude and roundness of the exemplar values and other predictor 

variables.  We used separate regressions for each approximator.  We could have instead 

constructed a grand regression with the approximator itself as a predictor variable along 

with the magnitude and roundness of the exemplar value, but doing so would have 

entailed an assumption of homoscedasticity among residuals for the various 

approximators.  Such an assumption would be untenable given the scatter evident in the 

graphs of Figure 3. 

 

Not all variables offered as predictors could be reasonably used together in regressions.  

For instance, the Boolean variable indicating the discreteness of the unit is entailed by the 

unit group categorical variable, so both should not be used together.  Likewise, the 

magnitude, number of significant digits and roundness variables are essentially coplanar 

as one is a function of the other two.  (Roundness is the integer part of the base-ten log of 

the exemplar value plus one and minus the number of significant digits.)  Thus, a 

regression can only use two of these variables as predictor variables.  We found that the 

log exemplar value and roundness yielded slightly higher regression fits as measured by 

the coefficient of determination.  We excluded from the regression analyses any intervals 

of zero width because their log ranges would be negative infinity.  Note that this included 

most of the intervals reported for the approximators ‘precisely’ and ‘exactly’ and [null].   

 

Table 4 gives coefficients for an expression to predict the log width of the interval 

implied by a hedged numerical expression involving a given approximator and exemplar 

number.  The log width is  
 

 L = A + Bz + Cr + Df + Ezr + Fzf  + Grf  + Hzrf  
 

where z is the base-ten log of the magnitude of the exemplar number, and r is its 

roundness, computed as the base-ten log of its order of significance, and f is 1 if the 

exemplar numeral ends in a ‘5’ and 0 otherwise.  The interval is predicted to be 10
L
 units 

wide.  The residual uncertainty about this width not accounted for in the regression is 

expressed as a lognormal distribution with mean equal to 10
²/2

 and variance equal to 
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10
2 ²

–10
²
, where  is given in Table 4.  The last column of the table gives the (multiple, 

unadjusted) coefficient of determination which characterizes the goodness of fit of each 

regression.  Comparable coefficients from parallel regression analyses for the minima and 

maxima of the intervals directly (rather than their ranges) are available at the project 

website https://sites.google.com/site/numericalhedging/hedge-code.   
 

Table 4.  Coefficients from regression analyses for each approximator to predict the 

width of an interval implied by a hedged numerical expression 

 Approximator A B C D E F G H  R
2
 

 about –0.2085 0.4285 0.2807 0.0940 0.0147 –0.0640 –0.0102 0.0404 0.5837 0.7412 

 roughly –0.103 0.3687 0.2559 –0.0303 0.0353 0.1051 0.1422 –0.0562 0.5966 0.7211 

 approximately –0.3171 0.4993 0.254 0.6410 0.0177 –0.2835 0.1025 0.0169 0.6192 0.7364 

 around –0.1018 0.3429 0.3169 0.0951 0.0381 –0.0005 0.0174 –0.0029 0.5261 0.8118 

 at most –0.3076 0.4751 0.2477 0.1168 0.0088 –0.0619 0.1551 0.0052 0.5956 0.7432 

 at least –0.1128 0.3624 0.3829 0.3188 0.0087 –0.1404 0.0069 0.0409 0.5927 0.7562 

 no more than –0.2699 0.4187 0.2418 0.2216 0.0382 –0.0467 0.0689 0.0069 0.5916 0.7640 

 no less than –0.0187 0.3412 0.2207 –0.1427 0.0341 0.1616 –0.1480 0.0083 0.6314 0.7475 

 over –0.0668 0.3793 0.2490 –0.1635 0.0344 0.1353 –0.0068 –0.0176 0.6666 0.7643 

 above –0.1736 0.4483 0.2625 0.0224 0.0112 0.0669 –0.1354 0.0156 0.6668 0.7079 

 below –0.3052 0.4275 0.2666 0.3141 0.0353 –0.1348 0.1678 –0.0168 0.6577 0.7500 

 almost –0.4539 0.4593 0.3567 0.4006 –0.0196 –0.2245 –0.0534 0.0882 0.6640 0.7140 

 nearly –0.2716 0.3420 0.2722 0.0923 0.0440 0.0196 0.0386 –0.0270 0.5969 0.7677 

 [null] 0.2070 0.1374 –0.4265 –0.4267 0.2450 0.3341 2.1650 –0.6876 0.7869 0.6400 

 precisely –0.4989 0.5884 0.3812 1.3500 –0.0774 –0.8274 –0.7248 0.2464 0.3859 0.8566 

 exactly –0.8360 0.7434 0.6058 5.427 –0.2055 –0.7757 0.0000 0.0000 1.0370 0.7019 

 

Previous work quantifying the numerical implications of approximators by Channell 

(1994) suggested that the units of the quantity make a difference in how wide the 

perceived interval would be.  Because we employed 189 individual units in the test 

statements, we did not have sufficient sample sizes to explore this question for each unit 

separately.  Instead, we grouped units into seven dimensional categories (money, length, 

weight, time, speed, percent, and discrete).  These seven levels formed a factor in the 

anovas.  The linear model included this factor as well as the magnitude and roundness of 

the exemplar number as predictor variables.  In none of the analyses for the sixteen 

approximators was the unit group factor statistically significant.  We also looked for an 

effect of whether the unit of the quantity was countable or not.  The linear models were 

expanded to include a binary variable that was set to true if the quantity was discrete 

(countable) or false if it was continuous (measurable).  In only two of the sixteen analyses 

was this variable a statistically significant predictor of the log range (P=0.025 for 

‘almost’ and P=0.047 for ‘approximately’).  Thus, although it may be true that the unit of 

a numerical expression makes some difference in the implied width of the interval of 

possible values, it does not appear that either the dimension or the countability or 

measurability of the unit makes such a difference as far as we detect. 

 

 

https://sites.google.com/site/numericalhedging/hedge-code
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Numbers without hedges 

There is an old joke about a janitor at the American Museum of Natural History who was 

heard to tell museum visitors that some dinosaur skeleton was 65 million and 7 years old.  

When asked about the 7 years, he explained that, when he was hired 7 years ago, the 

museum curator had told him the skeleton was 65 million years old.  Unfortunately for 

both risk communicators and automated text analysis systems alike, the premise of this 

joke is true to life in that numbers that are not modified with hedge words are commonly 

interpreted as being more precise than they likely are. 

 

As shown in Table 3, we found that few workers interpret numbers expressed with the 

null approximator as implying any uncertainty at all.  Out of a sample size of 407 

intervals describing the possible values implied by numbers without any explicit 

approximator, 94% had zero width, as though those numbers were perfectly precise.  

These responses created the long spikes at zero in the ‘[null]’ graphs in Figures 3 and 4.  

Fully 98% of the intervals reported for numeric expressions with the null approximator 

understated uncertainty relative to the traditional scientific interpretation based on the 

significant-digits convention. 

 

Preliminary research using questionnaires that was previously conducted with 

respondents recruited from among graduate students in a class on risk analysis supported 

the same conclusions.  When asked to indicate the smallest and largest possible values 

that were consistent with a given phrase, all but one of the respondents gave zero-width 

intervals for the unhedged numerical expressions ‘7’, ‘470’, and ‘2.31’.  Thus, even 

(neophyte) risk analysts seem to be prepared to accept numerical expressions with the 

null hedge as perfectly precise quantities.  They also gave the same degenerate intervals 

when asked about the phrases ‘exactly 7’, ‘exactly 470’, ‘exactly 2.31’, ‘precisely 7’, 

‘precisely 470’, and ‘precisely 2.31’, suggesting that the approximators ‘exactly’ and 

‘precisely’ have no substantive quantitative implications on the numeric interpretation 

compared to the null hedge, although they may have some linguistic role. 

 

Research suggests that effective risk communication requires clear and consistent 

messages, and risk communicators worry that adding uncertainty information to forecasts 

may confuse the message and impede understanding and action by the public (NRC 2006, 

page 69).  Yet, as risk analysts well know, this uncertainty matters.  For example, when 

the Red River was forecasted during the 1997 flood to crest at 49 feet, residents believed 

their 52-foot dikes would protect them.  When the river actually crested over 54 feet, it 

overtopped dikes and inundated communities in North Dakota and Minnesota leaving 

them devastated (Morss and Wahl 2007).  Residents and local officials seem not to have 

appreciated that the hydrological prediction had uncertainty, and that this uncertainty was 

increased by the fact that the event would be a record-breaking event.  Forecasters were 

aware of the uncertainty (although they may have substantially underestimated it), but did 

not effectively communicate this uncertainty to residents and decision makers.  The 

prediction was incomplete in that it did not highlight various scenarios that might entail 

higher water levels.  No bounding or worst-case predictions were provided (James and 

Korom 2001).  Updates to the prediction were not timely, and the fact that the prediction 
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did not change much may have been interpreted by the public as surety about the 

forecast.  Nevertheless, the subsequent strong public criticism for underestimating the 

flood seemed to be hard for forecasters to accept because, after all, they had come to 

within a few feet of predicting this unprecedented event.  Political decision makers had 

expressly requested single forecasts of crest levels (NWS 1998; NRC 2006).  The 

forecasters had believed the public would understand that all such predictions are 

uncertain.   

 

Of course it is not clear that simply affixing some hedge such as ‘about’ or ‘at least’ to 

the predicted water level could have resulted in better risk communication, or in any way 

have changed the outcome of the Red River flood.  But it would have allowed for a more 

easily defendable truth qualification as described by (Prince et al. 1982).  What is clear 

from our findings is that hedge-less numerical expressions are very likely to be 

misinterpreted if the number has any uncertainty, and the direction of the 

misinterpretation invariably diminishes the uncertainty.  The situation is likely worsened 

when the number is expressed by a perceived authority.  If the people who have studied 

the problem say the answer is 49 feet, consumers of the information usually have scant 

cause to question the estimate.  Shield hedges such as ‘we expect that’ or ‘we estimate 

that’ seem to be automatically discounted by the public because the pronouncements 

come from authorities, and in some cases the only authority.  This is part of what we 

might call the authority problem which is that people tend to overtrust pronouncements 

delivered by authority figures (Shackley and Wynne 1996; Ert and Erev 2008; Freedman 

2010; Burgman et al. 2011).  It makes little impact how much authorities qualify their 

statements as opinions, because the whole reason to appeal to authorities is to elicit those 

opinions which, in the absence of other ideas, have to serve as the only estimates.  This 

makes it all the more important for an honest analyst to convey the uncertainty about a 

prediction in the expression of the prediction itself. 

 

Given that the public often demands single-number predictions, using hedges may be the 

only way for an analyst to sneak this uncertainty into the prediction, especially since the 

significant-digits convention appears to be not communicative and is incomplete in that it 

cannot express every possible range of uncertainty.  Numbers expressed without hedge 

words are very likely to be commonly misunderstood as being more precise that they 

actually are.  Siegrist et al. (2014) call such unqualified expressions “naked numbers” and 

argue that they can produce erroneous results in cost benefit analyses, risk assessments 

and other analyses under uncertainty. 

 

Roundness of the exemplar number 

Round numbers are integers whose numerals end in one or more zeros.  Among numbers 

of the same order of magnitude, having more ending zeros makes the number rounder, so 

123000 is rounder than 123450.  The idea of roundness is often extended to noninteger 

numbers, so 1.23, which is equal to 1.23000, is rounder than 1.23456.  For a given order 

of magnitude, the log order of the least significant digit directly measures the roundness 

of the number.  For example, the numbers 12100, 12342, 12780, and 12900 have log 
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significance orders of 2, 0, 1, and 2 respectively, despite all the numbers having the same 

order of magnitude of 4.  For integers, the log significance order counts the non-

significant trailing zeros.  The regression analyses discussed above reveal that increasing 

roundness of the exemplar number is associated with larger width of the reported interval, 

even after controlling for the magnitude of the exemplar number.  The regression 

coefficients for roundness (log significance order) were positive for every approximator 

studied. 

 

Among English
2
 speakers, zero is not the only digit that can be used to make round 

numbers.  It is often presumed that a numeral ending in the digit ‘5’ is a rounder number 

than one ending in another nonzero digit.  Five is, in a sense, halfway to zero.  It has been 

assumed in the linguistics literature (see, for example, Krifka 2007) that approximators 

such as ‘about’, ‘around’, and the null approximator would allow wider ranges of 

possible values if applied to an exemplar value with a least nonzero digit of ‘5’ rather 

than another nonzero digit.  As an example, one can imagine that there might be a 

difference between two answers to the question “What time is it?”, one answer where the 

number of minutes ends with 5, such as “It’s 12:35” vs. an answer where the number of 

minutes ends with a nonzero number different from 5, such as “It’s 12:37.” It has been 

argued that in the former case, the interval is larger than in the latter case: it could be 

[12:33, 12:37] for the former case, an interval with the width is four minutes, compared 

to the interval [12:36 and 30 seconds, 12:37 and 30 seconds] for the latter case which is 

an interval with the width one minute.  Regression analysis can also address the question 

of whether numerals ending in ‘5’ imply wider intervals than those that end in other 

nonzero digits. 

 

We tested this question using the data for the symmetric approximators ‘about’, ‘around’, 

‘approximately’, and ‘roughly’.  In anovas that controlled for the effects of magnitude 

and roundness of the exemplar value, we found that there was a positive and statistically 

significant effect only for ‘around’ (P=0.024).  For the approximator ‘roughly’, we 

observed a significant statistical interaction that precludes a simple interpretation of the 

effect, and we observed no significant effect for either ‘approximately’ (P=0.097) or 

‘about’ (P=0.36).  However, because the set of these approximators is homoscedastic and 

the original claim by linguists was about symmetric approximators as a class, it is 

perhaps reasonable to test for the effect on the pooled data.  This test of pooled data 

revealed a positive and statistically very significant (P < 0.0002) effect.  If the intervals 

for the null approximator are also included in the analysis, the effect is still highly 

significant (P < 0.0003).  We thus confirm that ending the numeral in the exemplar value 

with a ‘5’ is interpreted to imply a wider interval of possible values, at least for the 

symmetric approximators, although the size of the difference is small compared to the 

effect of either the magnitude or roundness of the exemplar number. 

 

                                                 
2
 People tend to exhibit preferences for the last digit of numbers they report according to their 

respective language.  French and Italian speakers favor 0 and 5 as the last digit, whereas 2, 4, 6 

and 8 are more favored by German speakers (Bopp and Faeh 2008), and this language-specific 

pattern seems to be irrespective of nationality.  English speakers seem to favor 0, but apparently 

also 8 and 5 (de Lusignan et al. 2004). 
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What is the quantitative implication of this significant effect of five-rounding?  Figure 5 

depicts the effect of rounding the exemplar number to end in a ‘5’ on the perceived 

uncertainty of numerical expressions for all the symmetric approximators.  The figure 

shows simultaneously the effects of magnitude, roundness and five-rounding.  The 

lengths of the vertical line segments represent the possible effect (in terms of log range) 

of having or not having a ‘5’ as the last significant digit.  They are the possible values 

predicted from the fitted regression model for different nonzero last significant digits.  

The predictions were made at every value of magnitude and roundness in the observed 

data set.  Given a magnitude and roundness for the exemplar number, the upper endpoint 

of the depicted line segment corresponds to the exemplar number ending in ‘5’, and 

lower endpoint corresponds to it ending in another nonzero number.  The rows apparent 

in the scatter of the line segments correspond to the various integral log significance 

orders (roundnesses), with small orders at the bottom of the graph and larger orders 

toward the top.  The statistically significant interaction between the log magnitude and 

the log significance order of the exemplar value is reflected in the graph.  We see the 

interaction in the fact that the rows corresponding to different log significance orders 

have noticeably different slopes.  The scattergrams for the individual approximators are 

qualitatively similar to the pattern in Figure 5. 
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Figure 5.  Breadths (vertical segments) of uncertainties about the log range of intervals 

implied by exemplar numbers ending in a ‘5’ versus another nonzero digit predicted for 

all symmetric approximators. 
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Encoding uncertainty into hedged numerical expressions 

Having considered the direct problem of interpreting the quantitative meaning of a 

hedged numerical expression that has been produced by a native speaker, we now address 

the reverse problem of formulating a hedged numerical expression to encode uncertainty 

for communication.  Analysts compute uncertainties from their risk analyses which then 

need to be communicated to decision makers and sometimes the public at large, and it is 

incumbent on the analyst or the risk communicator to express these uncertainties in ways 

that can be understood and appreciated. 

 

There are three inputs for this process.  The first and main input is the interval of 

uncertainty to be conveyed, which might be a confidence interval or a dynamic range of 

some variable or some other window of uncertainty in which a quantity has been isolated.  

The second input is the dimension of the units.  The units themselves may be selectable.  

For instance, when the analyst is given that the quantity is a time, several possible units 

are available, including second, minute, hour, day, week, month, year, decade, etc.  The 

unit can be selected to most readily convey the uncertainty.  Besides the dimension and 

the interval range, the only other input is whether the uncertainty should be described 

symmetrically or asymmetrically and, if the latter, from which direction.  With these 

three inputs, there are constraints on the magnitude of the exemplar number to be used in 

the constructed numerical expression, although there is some leeway in its particular 

value.   

 

In practice, perhaps the simplest way to find an appropriate hedged numerical expression 

for conveying a given interval is to use a simple trial-and-error strategy varying the 

approximator, the units, the exemplar value, and its roundness (or number of significant 

digits) to find the combination that minimizes the difference between the log width of the 

interval computed using the regression analyses and that of the actual interval.  

Alternatively, this fitting can be constrained to among intervals that encompass the given 

interval so as to never understate the uncertainty.  There may not be a single optimal way 

to express the uncertainty from a risk analysis.  Indeed, the similarities we observed 

among several of the hedges suggest that, in many cases, multiple approximators may be 

essentially equivalent for a particular task.  The search strategy therefore need only be 

satisficing and not optimizing. 

 

The latest regression coefficients from analyses conducted as part of the research 

described in this paper are embedded in software written in R (R Core Team 2013) to 

interpret hedged numerical expressions.  The code is available from the authors or 

directly from https://sites.google.com/site/numericalhedging/hedge-code.  In some applications 

it may be reasonable to undertake a special assessment, perhaps via traditional 

questionnaires, Amazon Mechanical Turk, or other on-line survey approach (Bethlehem 

and Biffignandi 2012).  Such an assessment can directly characterize the role played by 

different individual units that could be used to express results on the quantitative 

implications of hedging. 

 

https://sites.google.com/site/numericalhedging/hedge-code
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Conclusions 

Different English speakers understand approximators such as ‘about’, ‘nearly’, and ‘no 

less than’ in different ways, and we find considerable inter-individual variation, but there 

are consistent patterns in the perceived implications of the various approximators.  These 

patterns are strongly modulated by context such as magnitude of the number, its 

roundness, and even possibly its units.   

 

With regression analysis and sample sizes in the thousands obtained through Amazon 

Mechanical Turk, we are able to construct a decoding for each approximator that explains 

the likely uncertainty that will be understood when it is used as a hedge for a numerical 

expression.  These decodings characterize the quantitative implications of the uncertain 

expressions, which is important for understanding patient complaints about, for instance, 

a headache “that’s lasted over 7 days”.  The residual variation around each regression 

prediction can be expressed as a probability box encompassing a distribution of results 

across respondents and the epistemic uncertainties they reported.  These findings can also 

be applied to encode uncertainty for fashioning numerical expressions used in risk 

communication, so long as the uncertainty is not very wide. 

 

The differences between approximators that we originally expected to see do not seem to 

be empirically justified by the data obtained from native English speakers.  There is far 

less variation among the hedges than might be imagined, and far less than would be 

linguistically and practically useful.  In fact, the approximators ‘about’, ‘around’, 

‘approximately’ and ‘roughly’ are almost identical in distribution.  Likewise, the 

approximators ‘precisely’, ‘exactly’ and the null hedge appear to be very similar, almost 

to the point of indistinguishability.  The asymmetric approximators are similar to one 

another as well, modulo the direction of asymmetry.  Most surprising is our finding that 

the null hedge entails no uncertainty at all among most English speakers.  If this finding 

persists under different experimental designs and interrogation schemes, it is a 

fundamentally important lesson for risk communication.  It would imply that the 

significant-digits convention used by many scientists to express numerical results and 

interpret numerical values reported by others is essentially totally ignored by most 

people. 

 

Discussion 

Even though honest accounting of uncertainties can make criticism of risk assessment 

projections unsportingly easy (e.g., Kharin et al. 2009; cf. Ball 2013; Harris 2013), 

almost all risk analysts agree it is of fundamental importance.  There are a host of special 

problems associated with risk communication of uncertain values (NRC 1989; Morgan et 

al. 2002; Gigerenzer 2003; Tucker et al. 2008; Spiegelhalter et al. 2011), and there are 

good reasons to believe that, as a profession, we are doing it incorrectly, or at least 

inefficiently. 
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The ability to quantitatively decode and encode natural linguistic expressions of 

uncertainty would seem to be a basic facility that must be developed in risk 

communication.  Hedged numerical expressions are extremely common in writing and 

speech in English.  Automated Google numerical searches reveal usage patterns for 

approximators in the English-language text corpus of the indexable Web (which excludes 

FTP files, chat, etc.).  Searches for all combinations of a list of common units and hedges 

associated with a number between zero and one million using Google queries like "about 

0..1000000 kilometers" yielded the results depicted in a heatmap in Figure 6 

where darker shades of gray imply higher counts.  Base-ten logarithms of the occurrence 

counts are superimposed on the heatmap.  The approximators ‘about’ and ‘over’ were the 

most common hedges and the results roughly followed the word frequency in the English 

language.  Units of time (especially years) and people were the most common units 

associated with hedge words.   
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Figure 6.  Grayscale heatmap of the base-ten logs of the number of occurrences for 

various approximators (columns) and units (rows) in numerical expressions found by 

Google. 

 

The experiments described in this paper can be extended and generalized in a variety of 

ways.  For instance, it would be relatively straightforward to consider fractional values, 

negative values, absolute times such as dates, quantities on special scales such as 

temperatures, mixed scales such as feet & inches, and perhaps geographical coordinates.  

It would also be easy to explore possible regional differences in the quantitative 

implications of approximators.  Amazon Mechanical Turk can also be used to extend the 

experiments to languages other than English.  There is considerable similarity among 
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human languages with regard to how approximators are used, although there are some 

exceptions.  For example, Russian uses words such as ‘около’ (‘nearly’), ‘почти’ 

(‘almost’), ‘примерно’ (‘about’), etc., in ways similar to their English counterparts, but 

Russian also has a linguistic construction known as approximative inversion in which 

switching the order of the numeral and the noun creates an approximative reading 

(Yadroff & Billings 1998).  The following sentences illustrate this construction: 
 

 Иван встретил 40 человек  Иван встретил человек 40 

 Ivan met 40 people  Ivan met people 40 

 “Ivan met 40 people” “Ivan met approximately 40 people” 
 

A number of East Asian languages such as Japanese, Korean and Mandarin use obligate 

numerical classifier words comparable to measure words even for notions that are 

considered countable nouns in English.  These classifiers also contain meaning.  For 

example, the word ‘kuai’ in Manadrin is used for chunky things such as rocks or piece of 

pork (Liu 2012).  Apart from these rather minor differences, the systems of 

approximators used in all natural languages seem to have remarkable congruencies, 

which suggest that they should be amendable to study and cross-linguistic comparison 

using Amazon Mechanical Turk. 

 

Other language systems conveying uncertainty 

Channell (1994) described a variety of ways English speakers communicate their 

uncertainties.  Besides the unit number approximator paradigm, English has at least two 

other systems to convey imprecision, or equivalently, to qualify the precision that an 

expression about a quantity should be understood to have.  Both systems use a 

unit quantifier paradigm that folds imprecision and magnitude together.  In the first 

system the quantifiers are pseudonumbers such as ‘dozens of’, ‘millions of’, ‘bajillion’, 

‘eleventy’, ‘umpteen’, and placeholders borrowed from mathematics such as ‘X’, ‘Y’, ‘Z’, 

‘n-tuple’, and ‘a number of’ that denote unspecified numbers often to be determined later.  

Pseudonumbers already combine imprecision with magnitude, but they too can be hedged 

as in the phrase ‘about a bajillion dollars’, although it is unclear whether the 

approximator makes a difference.  The second system uses an elaborate array of generally 

non-numerical words such as ‘much’, ‘many’, ‘little’, ‘few’, ‘some’, ‘both’, ‘a couple of’, 

‘several’, ‘all’, ‘any’, ‘each’, ‘every’, ‘most’, ‘not any’, ‘not all’, ‘a handful of’, ‘a lot of’, 

‘lots of’, ‘plenty of’, ‘innumerable’, etc., which grammatically are determiners that 

express a relative or indefinite indication of quantity.  Although these constructs are 

called quantifiers in linguistics, they convey only qualitative information about a 

magnitude or quantity. 

 

The study of quantifiers dates to the invention of logic itself by Aristotle (Westerståhl 

2011).  Modern first-order logic recognizes only the universal quantifier (Ѱ, ‘for all’) 

and the existential quantifier (ѳ,‘there exists’), perhaps corresponding to ‘every’ and 

‘some’ respectively.  But logicians and linguists today recognize a substantially 

generalized notion of quantifiers (Barwise and Cooper 1981; Westerståhl 2011), which 
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includes approximators in a special category.  Among these quantifiers are primitive and 

derived forms (e.g., ‘not any’).  Unlike approximators which are continuously generated 

as language evolves, the list of primitive quantifiers is fixed and consistent across all 

human languages, although it is not exhaustive logically (e.g., no natural languages have 

‘not all’ expressed in a single word).  Nearly two hundred years ago the philosopher 

De Morgan attempted to develop a calculus for interpreting and making quantitative 

inferences from semi-quantitative expressions using linguistic quantifiers (Rice 2003).  It 

would certainly be helpful to bring this work into flower by establishing rules to decode 

the quantitative implications of generalized quantifiers, and thus allowing automated 

quantitative interpretation of natural-language utterances that involve words like ‘some’, 

‘several’, ‘most’ and ‘not all’.  It may be possible that a direct approach using MTurk 

such as we have used to study the quantitative implications of approximators in 

numerical expressions may also be useful in studying the quantitative implications of 

linguistic quantifiers. 

 

Fuzzy sets or other structures   

It is possible that some or most people have more complex conceptions of hedged 

numerical values than simple ranges.  For instance, it might reasonable to assert that the 

numeral 7 with some particular approximator corresponds to a trapezoidal fuzzy number 

(Kaufmann and Gupta 1985).  In particular, one person might interpret it to be [6, 6.5, 

7.5, 8] (which has a flat top over the range [6.5, 7.5] representing entirely possible values, 

and a base spanning the range [6, 8] as the conceivable values).  Other people might 

contrarily assert for the same hedge that the flat top and range are considerably wider.   

 

Channell (1994) claimed that individuals interpret numbers with approximators as 

implying only interval ranges, rather than some more complex characterization.  In our 

own preliminary work, we found subjects did not provide any more detailed information 

than intervals, even when asked to.  Because intervals are fundamental structures for both 

imprecise probability and fuzzy-set approaches, the results of our study can be applied in 

both.  For these reasons, we only collected intervals in the MTurk experiments.   

 

Figure 3 depicted the collections of intervals reported by a population of workers as 

probability boxes (Ferson 2002), but these collections could also be summarized by fuzzy 

numbers (Kaufmann and Gupta 1985).  Many ways to construct fuzzy membership 

functions from empirical data have been described (e.g., Giles 1982; Wallsten 1986; 

Smithson and Smithson 1987; Türkşen 1991; Bilgiç and Türkşen 2000; Marchant 2004; 

2004b).  In principle, the MTurk approach could be extended to elicit fuzzy numbers or 

probability boxes or other structures directly from individuals.  These experiments could 

be designed to detect whether any individuals conceptualize hedged numerical quantities 

with more information content than simple intervals. 

 

There is both a clear connection as well as a distinction between this work in interval-

valued approximators and the linguistic hedges associated with Zadeh (1983), fuzzy 

logic, and the computing-with-words trend that has unfolded over the last four decades. 
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In his seminal work on the topic, Zadeh (1972) defined a linguistic hedge as “an operator 

which acts on the fuzzy set representing the meaning of the operand”. We can think of 

the approximator as special type of linguistic hedge that acts a constructor operator to 

convert a precise numerical value to an imprecise quantity (interval, fuzzy set or 

probability box).  In reaction to Zadeh’s work, Lakoff (1973) affirmed that a better 

understanding of modifiers is important in natural language semantics.  In questioning 

some of the shortcomings of specific modifier valuations, which include quantifications 

of hedges, he posited a perceptual model for interpretating modified values that depend 

on contextual factors. The MTurk crowdsourcing experiment is an attempt to elicit these 

valuations and to find commonalities in perceptual models across informants.  Such a 

research program would expect to find semantic invariants that could be mapped as 

uniformities across situations (Reiger, 1994).  An attempt to characterize such a mapping 

with approximators is reflected in the diversity in context data used in the MTurk 

experiment. 

 

Fuzzy methods offer an alternative and more comprehensive strategy for quantifying the 

implications of hedged expressions.  In particular, they promise to characterize both 

shields and approximators. Indeed, it is common for natural language statements to 

include a shield hedge in combination with an approximator. For instance, “it’s most 

likely around 5 days old” may translate into an imprecise probability distribution centered 

around 5 days. 

 

The special case of probability 

Expression of probabilistic risk is a fundamental special case.  Humans and maybe 

primates generally seem to have an innate probability sense (Glimcher and Sparks 1993), 

although it may fail to engage for ill-formatted sensory data (Cosmides and Tooby 1996).   

 

A wide variety of verbal, graphical and other techniques have been suggested for 

conveying a probability of a well defined event.  One fundamental difficulty in this most 

basic risk communication task may be that most strategies presume the probability is 

precisely characterized as a real number (Spiegelhalter et al. 2011).  In fact, probabilities 

are usually estimated from data limited in abundance and precision. Likewise, risk 

analyses often yield imprecisely specified probabilities because of measurement error, 

small sample sizes, model uncertainty, and demographic uncertainty.  In contrast, human 

cognition seems to account for the effect of sample size automatically so that ‘10 out of 

100’ is perceived to be more precise than ‘1 out of 10’.  Gigerenzer (2003; Kurz-Milcke 

et al. 2008) argues that “natural frequency” in expressions like ‘k out of n’ is an effective 

tool for conveying an event probability, including the reliability of the estimate embodied 

in the n-value. 

 

This facility for natural frequencies can be exploited for communicating calculated risks.  

Under the theory of confidence structures (Balch 2012), the probability of an event 

estimated from binary data with k successes out of n trials is associated with a structure 

that has the form of a probability box. When n is large, this structure approximates the 
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beta distribution obtained by Bayesians under a binomial sampling model and Jeffreys 

prior, and asymptotically it approximates the frequentist scalar estimate k/n. But when n 

is small, it is imprecise and cannot be approximated by any single distribution because of 

demographic uncertainty that arises from estimating continuous variables from discrete 

data.  When a risk analysis yields a result in the form of a precise distribution or 

imprecise probability box for an event’s probability, we can approximate the result with a 

binomial probability estimated for some values of k and n.  Thus we can characterize the 

event probability from the risk analysis with a terse, natural-language expression of the 

form ‘k out of n’, where k and n are nonnegative integers and 0 Ò k Ò n.  Note this natural 

frequency is one of several numerical hedges using paired numbers.  It is comparable to, 

and composable with, ‘x or y’, and ‘x to y’. 

 

Future work: ludic elicitation 

There are in principle several ways to approach understanding how uncertainties from 

numerical summaries expressed in English phrases should be decoded quantitatively to 

inform a risk analysis.  Questionnaires asking readers the meanings of hedges were found 

to be cumbersome and even dizzying to the informants.  Such questionnaires could not 

conveniently include potentially important background information that would give 

context to each use of a hedged numerical expression.  However, using Amazon 

Mechanical Turk, the same kinds of questions can be contextualized and presented as 

separable individual tasks posed to human workers.  We found this to be a convenient 

approach that produces good sample sizes, but it may yield biased results if the human 

workers are not sufficiently motivated to produce good, thoughtful answers.   

 

In principle, the quality of a worker’s answers can be checked and rejected if they are 

incomplete or poor, in which case the worker is not paid for the effort and is stigmatized 

within the accounting system of Amazon Mechanical Turk.  In practice, however, it 

would be quite difficult to check the responses, especially because we are interested in 

the variation in responses to questions that have no clear answers.  Although the hourly 

rates and the payments they receive are pitifully small, there may be a tendency among 

workers to work fast rather than carefully, in order to maximize their incomes.  How can 

we be sure that they are not providing slapdash responses that do not reflect what they 

actually believe about the hedges under study?  How can we prevent workers from 

gaming our system and not giving us their considered responses?  Interestingly, the best 

strategy may be to turn our system into a game. 

 

An alternative strategy to collect more realistic information more easily uses ludic 

elicitation based on Luis von Ahn’s idea of internet games to harvest human intelligence 

(Law and von Ahn 2009) in which, as a part of on-line game play, humans make 

decisions that reveal interpretations and preferences by their decisions.  Artfully designed 

games can elicit information as a side-effect of play so that the elicitation process is 

enjoyable to participants who will thus play longer and share more of their intelligence. 

 This approach parasitizes human play, but it has relatively few moral or ethical problems 

since information is unlike resources that can only be shared in a zero-sum way.  Sharing 
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information does not diminish one’s own supply of information.  Although this process is 

a bit different from the normal approach of directly asking questions of human 

informants, scientific expertise about the design of questionnaires and experiments in 

general should nevertheless help us to avoid some pitfalls, misfires, and ambiguities in 

the results. 
 
Game play is typically composed of three broad phases:  a pre-ludic learning phase in 

which the participant is discovering the rules of play and coming to understand strategies 

to achieve high scores, a ludic phase in which the player actively plays the game because 

of its intrinsic interest and challenge, and a post-ludic phase in which a player either no 

longer plays the game at all or plays in a teasing or meta-play way that flaunts or ignores 

the game’s prescribed rules and goals.  Clearly, only the middle ludic phase is generally 

useful for information collection since players’ responses are trustworthy reflections of 

their beliefs only in this phase.  This means that attention must be devoted to discerning 

which phase each player is in. 

 

We have implemented multiple games for Facebook to improve our assessments of the 

quantitative meanings of English-language approximators, and also to assess whether the 

linguistic encodings are effective tools for risk communication.  The point is to confirm 

that the approximator interpretations produce inputs consistent with what was intended 

by users, and also that uncertainty projection routines produce computed answers that are 

justifiable with those inputs, or, if they are not, to correct the scheme and routines to 

improve the consistency.   
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Appendix 

Below is the Python code used to generate reasonable alternative numbers for 

constructing experimental sentences.  The function generateNumbers takes as its first 

argument a numeric value and, as its second argument, a string code indicating the type 

of the value (integer, decimal). 
 

import random 
def generateNumbers( num, mode ): 
        if mode == 'int': 
                numLength = len(str(num)) 
                numList = [] 
                numList.append(str(num)) 
                order = 0 
                digits = num 
                for i in range(numLength): 
                        lastDigit = digits % 10 
                        order = lastDigit * 10**i + order 
                        digits //= 10 
                        if order != 0 and order != num: 
                                numList.append(str(num - order)) 
                        a1 = num - order + random.choice([1,2,3,4,6,7,8,9]) * 10**i 
                        if a1 > 0: 
                                numList.append(str(a1)) 
                        b1 = num - order + 5 * 10**i 
                        if b1 > 0: 
                                numList.append(str(b1)) 
                return sorted(list(set(numList)), key=float) 
        elif mode == 'dec': 
                numLength = len(str(num)) - 1 
                factor = 1 
                for i in range(numLength): 
                        num *= 10 
                        factor *= 10 
                numList = [] 
                numList.append(str(num/factor)) 
                order = 0 
                digits = num 
                for i in range(numLength): 
                        lastDigit = digits % 10 
                        order = lastDigit * 10**i + order 
                        digits //= 10 
                        if order != 0 and order != num: 
                                numList.append(str((num - order)/factor)) 
                                #numList.append(str(num - order + 10**(i + 1))) 
                        a1 = num - order + random.choice([1,2,3,4,6,7,8,9]) * 10**i 
                        a1 /= factor 
                        if a1 > 0: 
                                numList.append(str(a1)) 
                        b1 = num - order + 5 * 10**i 
                        b1 /= factor 
                        if b1 > 0: 
                                numList.append(str(b1)) 
                return sorted(list(set(numList)), key=float)
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Highlights 

 One system of expressing uncertainty in natural languages involves approximators 

 Approximators are linguistic hedges, such as “about” or “more than”, with a number 

 We used Amazon Mechanical Turk to decode quantitative meanings of approximators  

 Human interpretations vary widely, but there may be as few as three kinds of hedges  

 Hedge word choice interacts with the magnitude and roundness of the nominal quantity 


