
3

SAND2008-XXXX
Unlimited release

Printed XXXX 2008

Projecting uncertainty through black boxes

Scott Ferson and Vladik Kreinovich

Applied Biomathematics
100 North Country Road

Setauket, New York 11733 USA

Abstract

Computational models whose internal details are not accessible to the analyst are called black
boxes. They arise because of security restrictions or because of the loss of the source code for
legacy software programs. Computational models whose internal details are extremely complex
are also sometimes treated as black boxes. It is often important to assess the uncertainty that
should be ascribed to the output from a black box owing to uncertainty about its input quantities,
their statistical distributions, or interdependencies. Sensitivity or ‘what-if’ studies are commonly
used for this purpose. In such studies, the space of possible inputs is sampled as a vector of real
values which is then provided to the black box to compute the output(s) that corresponds to those
inputs. Such studies are often cumbersome to implement and understand, and they generally
require many samples, depending on the complexity of the model and the dimensionality of the
inputs. This report reviews methods that can be used to propagate about inputs through black
boxes, especially ‘hard’ black boxes whose computational complexity restricts the total number of
samples that can be evaluated. The focus is on methods that estimate the uncertainty of the outputs
from the outside inward. That is, we are interested in methods that produce conservative
characterizations of uncertainty that become tighter and tighter as the total computational effort
increases.
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1. Introduction

A ‘black box’ is a model whose internal computational details are unknown to the analyst. Black
box models are common in some engineering settings when, for example, the internal details kept
hidden for the sake of security, confidentiality, or intellectual property concerns, or when the
internal details are available, but are so complex that projecting analyses through them is
impractical. Some businesses and government agencies actually use legacy computer models for
which the original source code has been lost. Sampling, in which the model is applied to a given
set of input values and returns one or more output values, is often the only effective means to study
black box models. This makes the study of computational black boxes much like empirical
scientific inquiry of the nature world in that we can see the outcomes generated under particular
input conditions, but cannot directly see into the inner workings that produced those results.

A hard black box model is one for which the number of samples is tightly constrained because of
computational difficulty or other limits. The larger and more computer-intensive codes become,
the harder the black box models are. Although the raw computational power available to analysts
is still exponentially expanding, computer simulation codes are often developed with similarly
increasing scientific and engineering complexity at the limits of practical computability. For
practical purposes, we are interested in methods that can be applied to black box models in general,
and especially in any methods that can be applied to hard black box models for which relatively
few samples will be available.

<<introduce Monte Carlo>>

Monte Carlo simulation and its kin (Latin hypercube sampling, importance sampling, etc.) are
considered the methods of choice for propagating aleatory uncertainty of input variables through

<<mention RSM, defer to section below>>

<<introduce kinds of uncertainty and uncertain numbers>>

Uncertain numbers characterize quantities with aleatory uncertainty (variability) or epistemic
uncertainty (partial ignorance) or both kinds of uncertainty. They generalize real numbers,
intervals, probability distributions, interval bounds on probability distribution (probability boxes),
and finite Dempster-Shafer structures whose elements are closed intervals of the real line.

<<purpose of report>>

This report reviews several methods that can be used to compute a surely or approximately
conservative projection of uncertainty through a black box, i.e., a model whose internal details are
not known to the analyst except through sampling. Because such strategies trade-off optimality of
the results for computational convenience in obtaining them, they could be useful in screening
assessments for problems where sampling is severely limited. The idea is to make calculations in a
way that is sure to be conservative about uncertainty (i.e., sure not to underestimate uncertainty)
but which can be completed without exhausting computational effort. In last year’s research, three
approximation methods were studied: the Cauchy deviate method, the Kolmogorov-Smirnov
method, and the Saw et al. inequality method. In the Cauchy deviate method, complicated
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Dempster-Shafer structures representing inputs were replaced with coarse intervals that enclose the
structure completely and an approximate sampling strategy based on Cauchy deviates is used to
propagate the intervals through a black box function. The deviates straddle and extend beyond the
ranges of the intervals, but corrections to the summary results allow good estimates of the output
interval when the function is roughly linear or the uncertainties are relatively small. In the
Kolmogorov-Smirnov method, a black box function is treated as an oracle that produces a
“sample” output for any set of inputs. Because these outputs are independent (if the sets of inputs
are) and identically distributed, Kolmogorov-Smirnov confidence limits for a distribution can be
used to obtain bounds on the distribution that account for uncertainty arising from the small sample
size.

We also study some other methods, including the uniformity principle which computes
conservative risk estimates in a distributionally robust way and the Saw et al. method which
appeals to a generalization of the Chebyshev inequality, which yields bounds on the tail risks of a
quantity given the mean and variance of the quantity.

The sampling of the black box function is thus reduced to a problem of estimating the mean and
variance of the output. Follow-on research this year will explore other possible approximation
strategies. The effort will include comparing the performance characteristics of the approximation
strategies in realistic example problems and contrasting the strategies in terms of their usefulness in
different situations.

We assume that the computation inside the black box is deterministic, although some of the
methods described herein may also be useful if it is stochastic.

In particular situations, there may also be extra information available about the model, such as that
it is an approximately linear or monotone function or that it is a smooth or slowing changing
function of its inputs. Such knowledge may arise from the programmer or scientific understanding
of the underlying physics.

This report reviews several methods that can be used to compute a surely or approximately
conservative projection of uncertainty about inputs through a black box, i.e., a model whose
internal details are not known to the analyst except through sampling.

Being conservative about uncertainty is being sure not to underestimate uncertainty.

We know how to do it intrusively (see section <<RSM>>).

The advantages outlined above of the new methods are limited to models involving explicitly
known calculations. Probability bounds analysis and Dempster-Shafer theory cannot be rigorously
applied to black box models, at least with algorithms currently available. Various sampling
schemes have been proposed to extend these methods to black boxes (e.g., Helton et al. 2004a,b;
2006c; Bruns et al. 2006), but, because they are necessarily approximation methods, they abandon
the guarantee that the results will enclose the true distributions. This means that the sampling-
based methods do not provide “automatic result verification” (Adams and Kulisch 1993), although
numerical simulations suggest that overall error rates can be made reasonably small if the black
box permits many samples to be computed.

Furthermore, although it is often easy to apply the new methods to explicitly known models in a
way that produces results that rigorously bound the possible output distributions (given the inputs),
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it can often be difficult to make the results best possible bounds whenever uncertain variables
appear multiple times in a calculation as often occurs in complex models involving dependencies
among subcomponents. In general, computing best possible bounds is computationally intensive,
and optimality of the bounds becomes harder and harder to maintain as the size of the problem and
the interconnectedness of its elements increase. In practical assessments, however, optimality may
not be essential. For instance, if an assessment can show that the risks are surely below some
threshold of concern, because the upper distributional bound of risk is below it, then no further
study is necessary. Likewise, if the result indicates that the risks are surely intolerably high,
because the lower distributional bound on risk is above the threshold, then the implied decision is
also clear. In practice we find analyses producing results with clear implications for decisions and
management to be surprisingly common, even in cases with large input uncertainties that might
have been expected to cloud the results. This frees available analytical resources to be
concentrated where they are needed most: on problems where the attendant uncertainty makes the
decision unclear.

<<Roadmap>>

2. Response surface modeling

The general strategy of response surface modeling (Myers 1971; Morton 1983; Downing et al.
1985; Kleijnen 1992; Myers 1999; Myers et al. 2004) allows an indirect application of Dempster-
Shafer theory and probability bounds analysis to black boxes that might often be useful and
effective. Response surface modeling is widely employed in engineering to replace a black box
that is too hard to study directly with a statistical model of the black box that is more amenable to
detailed analysis. In principle, the response surface models can have any form, but usually a linear
or low-order polynomial model is employed, which is often characterized as a “model of the
model” in that it is a nakedly phenomenological model of a much richer, physics-based model.

Many analysts (e.g., Frey and Patil 2002) suggest that it will often be advantageous to limit the
number of inputs that are included in the response surface model to those that are identified as the
most important using some screening sensitivity analysis. Apart from the chicken-and-egg
problem of having to decide what is important to a sensitivity analysis before one conducts a
sensitivity analysis, there is a more fundamental objection to this suggestion: several individually
unimportant variables may, in aggregate, be important. Although it may be reasonable to drop
small-impact terms when trying to make an approximation, this is not a good idea when trying to
bound uncertainty. In the context of epistemic uncertainty, it may be far more reasonable to
simplify the problem in other ways, such as replacing a complex Dempster-Shafer or p-box
representation of an input variable with its interval support. Such replacements cannot lead to
underestimates of uncertainty, even if there are many of them. This strategy would therefore be
preferable in many situations to simply omitting variables. On the other hand, the strategy cannot
by itself overcome the problem of having very few samples.

Another important consideration also argues against omitting any of the inputs before computing
the regression. In a reduced regression analysis, the regression coefficients cannot be directly
interpreted as sensitivities associated with the terms of the regression. This is because regression
coefficients can change, sometimes dramatically or even in sign, when the regression model is
altered. When developing a response surface model, at least analysts know the correct inputs to
use for their black-box model. (In this way they are better off than regression analysts in general
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who do not have such information.) Omitting some of the inputs to simplify the response surface is
problematic because it creates the same disadvantage of varying regression coefficients for the
response surface modeler.

The selection of the inputs to be used in sampling is an important consideration in response surface
modeling, and this problem is treated in the broad statistical literature on sampling and
experimental design. Typically, the inputs can be chosen by the analyst, although the design of
inputs for sampling may occasionally not be under the analyst’s control. This can happen when,
for example, samples were obtained for other purposes (such as calibration) and additional
sampling would be costly. When an analyst can specify the inputs for the samples, randomness of
sample design is often a good strategy in many situations and usually simplifies statistical
inferences, but various stratified sampling strategies such as Latin hypercube sampling or
importance sampling may more commonly be preferable (Helton and Davis 2000a; 2002; 2003).

Perhaps even more critical than where the points will be is the issue of how many points there will
be. If there are D input dimensions, one needs a minimum of D+1 sample points in general
position to specify a linear model. Many more points would be necessary to specify a full
quadratic or higher-order model. If there are more input dimensions than there are sample points,
then the regression is underdetermined and cannot be performed by objective statistical methods.
There are infinitely many planes that pass through two points. It may still be possible,
nevertheless, to use response surfaces even in these extreme cases if the analyst can interject
mechanistic knowledge of the physics of the underlying process to specify the model.

The difference between the original sample output and the output that would be predicted from the
response surface model applied to the corresponding sample input is called the residual. The
statistical fit of a response surface model and the normality of residuals can be studied using
various standard well-known techniques such as the Kolmogorov-Smirnov, Anderson-Darling or
chi-squared tests. For many hard black boxes, however, the goodness of fit of the response surface
model is rarely an issue because the number of available sample points is so few relative to the
dimensionality of the model. If a response surface can be selected to pass through all the available
points, the residuals are zero.

In applications where there are non-zero residuals, the uncertainty that they embody should not be
neglected in the subsequent analysis. A response surface model fitted by least-squares regression,
for example, will have a form like

y = 1x1 + 2x2 + … + kxk + 

where the response variable y is explained as a sum of inputs xi multiplied respectively by

associated regression coefficients i, and an error term  which is represented by a normal

distribution having mean zero and standard deviation  (which is essentially the standard deviation

of the residuals). Typically,  is assumed to be independent of the other terms in the regression
model. This error term should be incorporated into any subsequent sensitivity or uncertainty
analyses based on this response surface model. Failure to do so could clearly understate the true
uncertainty.

Once a black box model is represented by a response surface model, the methods of uncertainty
and sensitivity analysis outlined in the previous sections of this report can be directly applied,
including ordinary Dempster-Shafer theory and probability bounds analysis and pinching analyses
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of various kinds. The computational difficulty associated with these applications may be fairly low
if the response surface is a first-order linear model. If it includes repeated variables such as squares
or higher powers or cross products representing interactions in addition to linear terms, then more
careful strategies that account for the repeated variables will be needed to obtain best possible
results. Strategies that may be useful in such cases are reviewed by Kreinovich et al. (2006).

There is a loss of guaranteed rigor in the use of a response surface model rather than the original
model. This means that, even if the uncertainty of the input variables is surely captured by their
uncertain number representations (Dempster-Shafer structures or p-boxes) and original model is an
exact representation of the underlying process, the fitting of a response surface model is a statistical
exercise and it may be imperfect. Indeed, it would be expected to be imperfect when there are few
sample points available to inform the regression. We know of no method that would allow an
analyst to rigorously propagate uncertainty through a black box model without assumptions that
make the results contingent on the presumption that the response surface model is correct. The
absence of the guarantee means that the uncertainty and sensitivity analyses of hard black box
models will be approximate. Nevertheless, these approximations can often be good enough for use
throughout engineering.

3. Using uncertain numbers in black box calculations

An algorithm for computing a function f(x1, …, xn) of uncertain quantities x1, …, xn may sometimes
be implemented in a program available only as an executable computer code, with no source code
at hand. In such situations, when we have no easy way to analyze the code and decompose it into a
sequence of arithmetic operations, the only thing we can do is take this program as a black box, i.e.,
to apply it to different real-valued inputs and use the results of this sampling to compute the desired
p-box or Dempster-Shafer structure.

We are often interested in the value of a quantity y that is difficult or impossible to measure
directly. In this case, a natural idea is to measure easier-to-measure quantities x1,…, xn that are

related to the desired quantity y, and try to estimate y based on the results nxx ~,...,~
1 of these

measurements. To be able to produce such an estimate, we need to have an algorithm f (x1,…, xn)
that, based on the values x1,…, xn of the directly measured quantities, reconstructs the value y of the
desired quantity as y = f (x1,…, xn). Once we have such an algorithm, we plug in the measured

values of xi into this algorithm f, and get an estimate for y as )~,,~(~
1 nxxfy  .

Measurements are never 100% accurate; as a result, the actual values ix of the measured quantities

may somewhat differ from the measured values. In other words, we know the inputs to the

algorithm f only with some (measurement-related) uncertainty. Because of this input uncertainty

ii xx ~~  , our estimate )~,,~(~
1 nxxfy  is generally different from the actual value y = f (x1,…, xn)

of the desired quantity. In other words, uncertainty in the inputs leads to the uncertainty in the
output as well. It is therefore desirable to estimate this output uncertainty. So, we arrive at the
following problem:

We know

 the algorithm 1( )nf x … x  ;
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 the measured values  
1 n…x x  ; and

 the information about the uncertainty 
def

i iix xx  of each direct measurement.

We must estimate the uncertainty


y y y   of the algorithm’s output.

In order to solve this problem, we must know what are the possible types of information that we

can have about the uncertainty of each measurement error ix . We do not know the exact values

of the measurement errors ix ; as a result, in real life, we may have (and often we do have) several

situations in which we get exactly exactly the same measurement results  
1 n…x x  , but the actual

values 1 nx … x  of the measured quantity are different. Thus, to describe the uncertainty, we need

to know what the possible values of ix are, and how often different possible values can occur.

In the ideal case, when we have a complete description of uncertainty, we know the exact

frequency (probability) of all possible error combinations 1( )nx … x   . In other words, we know

the exact probability distribution of the set of all n -dimensional vectors 1( )nx x … x     .

Often, the measurement errors corresponding to different measurements are independent, so it is

sufficient to know the distribution of each variable ix . This distribution can be described, e.g., by a

cumulative density function (cdf)
def

( ) Prob( )i iF t x t 

Most traditional methods of processing uncertainty in science and engineering (see, e.g.,
Wadsworth 1990) are based on the assumption that we have a probabilistic uncertainty, i.e., that

the error distributions are independent, and that we know the probability distribution ( )iF t for

each of the variables ix . However, in real life, we often do not have all this information.

In some real-life situations, we do not have any information about the frequency of different

measurement error ix ; all we know is the range [ ]i i
   of possible values of this error. In this

case, the only information that we have about the actual measured value 
i iix xx   of i -th

quantity is that ix must be in the interval [ ]i ix x , where we denoted 
def

ii ix x
  and


def

ii ix x
  . The corresponding uncertainty is called interval uncertainty.

So far, we have describe two extreme situations:

in the case of probabilistic uncertainty, we have a complete information about which values ix

are possible, and what are the frequencies of different possible values;

in the case of interval uncertainty, we only know the range of possible values of ix , we do not

have any information about the frequencies at all.
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Sometimes we have an intermediate situation: we have some (partial) information about the

frequencies (probabilities) of different values of ix , but we do not have the complete information

about these frequencies.

How can we describe such situations? To describe the complete information about the probabilities

of different values of ix , we must describe, for every real number t , the value ( )iF t of the

corresponding cdf. Thus, when we have a partial information about these probabilities, it means

that, instead of the exact value ( )iF t , we only have the range [ ( ) ( )]i it tF F of possible values of

( )iF t . Thus, to describe such an intermediate situation, we must describe the bounds ( )i tF and

( )i tF for the cdf. These bounds are called probability boxes (or p-boxes, for short, Ferson 2002).

Both probability distributions and intervals can be described as particular cases of p-boxes:

a probability distribution ( )iF t can be described as a degenerate p-box [ ( ) ( )]i iF t F t ; and

an interval [ ]a a  can be described as a p-box [ ( ) ( )]i it tF F in which:

( ) 0i tF  for t a and ( ) 1i tF  for t a ;

( ) 0i tF  for t a and ( ) 1i tF  for t a .

So, p-boxes are the most general way of representing these types of uncertainty.

Another way to describe partial information about the uncertainty is by using the Dempster-Shafer

approach. In this approach, for each variable ix , instead of a single interval [ ]i ix x , we have

several intervals
( ) ( )[ ]k k

i ix x with probabilities ( )k
ip attached to each such interval (so that for every

i , ( ) ( )
1 2 1k kp p …   ). For example, we may have several experts who provide us with different

intervals
( ) ( )[ ]k k

i ix x , and ( )k
ip is the probability that k -th expert is right. The collection of

intervals with probabilities attached to different intervals constitutes a Dempster-Shafer knowledge
base.

Thus, depending on the information that we have about the uncertainty in ix , we can have five

different formulations of the above problem:

we know the probability distribution ( )iF t for each variable ix , we know that these distributions

are independent, and we must find the distribution ( )F t for 1( )ny f x … x   ;

we know the interval [ ]i ix x of possible values of each variable ix , and we must find the interval

[ ]y y of possible values of y ;
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we know the p-boxes [ ( ) ( )]i it tF F that characterize the distribution of each variable ix , we know

that the corresponding distributions are independent, and we must find the p-box [ ( ) ( )]F t F t that

describe the variable y ;

we know the Dempster-Shafer knowledge bases

(1) (1) (2) (2)(1) (2)[ ( ) ( )] [ ( ) ( )]i ii i i it t p t t p …x xx x        

that characterize the distribution of each variable ix , we know that the corresponding distributions

are independent, and we must find the Dempster-Shafer knowledge base that describe the variable
y ;

we may also have different types of uncertainty for different variables ix : e.g., we may have

probabilistic uncertainty or 1x and interval uncertainty for 2x .

It is also reasonable to consider the formulations in which the corresponding distributions may be
dependent.

There exist efficient methods for solving these problems (see Ferson 2002 and references therein).

Almost all of these methods are based on the fact that we know the algorithm f ; so, instead of

applying this algorithm step-by-step to the measured values  
1 n…x x  , we apply this same

algorithm step-by-step to the corresponding “uncertain numbers”: probability distributions,
intervals, and/or p-boxes.

In several practical situations, however, the algorithm is given as a black box: we do not know the
sequence of steps forming this algorithm; we can only plug in different values into this algorithm
and see the results. This situation is reasonably frequent, both with commercial software, where the
software’s owners try to prevent competitors from using their algorithms, and with classified or
security-related software, where efficient security-related algorithms are kept classified to prevent
the adversary from using them. In some practical cases, the situation is made even more difficult

by the fact that the software 1( )nf x … x  is so complex and requires so much time to run that it is

only possible to run it a few times. This complex black-box situation is what we will analyze in this
text. Even for a black-box function, it may be possible to run more simulations if we use the actual

black-box function 1( )nf x … x  to provide an approximating easier-to-compute model

appxo 1 1( ) ( )n nf x … x f x … x     , and then, we use this approximate models to estimate the

uncertainty of the results (see Kreinovich et al. 2008). So, if our preliminary computations show
that we need more simulations that the black-box function can give us, it does not necessarily mean
that the corresponding uncertainty estimation method cannot be applied to our case: we may still be

able to apply it to the approximate function approxf .

4. Known methods for solving the problem

Monte Carlo techniques
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Let us first consider the case of the probabilistic uncertainty, when we know that the values ix

are distributed according to the cdf ( )iF t , and that the corresponding random variables ix are

independent. In this case, we are interested to know the distribution ( )F t of y .

In the probabilistic case, a natural idea is to use Monte Carlo simulations. Specifically, on each

iteration k :

for each input variable ix , we simulate the values ( )k
ix distributed according to the known

distribution ( )iF t ;

then, we plug the simulated values ( )k
ix the algorithm f , and thus get the value

( ) (1) ( )
1( )k k

ny f x … x   .

After N iterations, we get N values ( )ky .

Since the inputs ( )k
ix are independently distributed according to the corresponding input

distributions ( )iF t , the outputs ( )ky are distributed according to the desired distribution ( )F t .

Thus, the N values ( )ky are a sample from the unknown distribution ( )F t . It is therefore

necessary to extract information about ( )F t from this sample.

Kolmogorov-Smirnov approach

One way to extract this information is to use the Kolmogorov-Smirnov confidence limits (see, e.g.,
Dixon and Massey 1969; Gibbon 1990; Sheskin 2004). These limits are based on considering the
value

def

max ( ) ( )N
t

M F t F t  

where ( )NF t is an empirical distribution related to the sample:

( )def { }
( )

k

N

# k y t
F t

N

 


It is known that for every given confidence level  and for every sample size N , there exists a

value ( )M N such that ( )M M N with certainty 1   . For each  , as N grows, the

value ( )M N tends to 0.

Generalization of Chebyshev inequality

An alternative method has also been proposed for extracting ( )F t from the empirical data. This

method is based on the generalization of Chebyshev inequality proposed by Saw et al. (1984; 1988;
see also Konijn 1987; Stuart and Ord 1987; Woo 1991; Young et al. 1988). Specifically,
Chebyshev inequality states that for a random variable X with mean  and standard deviation



15

 , for every real number 1  , we have X       with probability 21 1    . Saw et

al. produce a similar inequality based on the sample mean

(1) ( )NX … X

N


 


and a sample standard deviation V  , where

(1) 2 ( ) 2( ) ( )

1

NX … X
V

N

    
 



According to Saw et al. (1984), we have Prob( ) ( )X f N         for some function

( )f N  . Thus, if we have know N samples (1) ( )Ny … y  from the unknown distribution ( )F t ,

then we can conclude that with probability 1 ( )f N    , the random variables y is located

within the interval [ ]y yy y      , where

(1) ( )Ny … y
y

N

 


and y yV  , with

(1) 2 ( ) 2( ) ( )

1

N

y

y y … y y
V

N

   
 



Cauchy deviates method

Yet another method for extracting information about ( )F t comes from considering the interval

case.

In the interval case, we have intervals [ ]i ix x of possible values of each input ix , and we are

interested in finding the corresponding interval [ ]y y of possible values of y .

It is convenient to represent each interval [ ]i ix x by its midpoint

def
mid

2
i i

i

x xx




and by its half-width

def

2
i i

i
x x

 
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so that each such interval takes the form mid mid[ ]i i i ix x     . In this representation, instead of

the original variables ix that take values from ix to ix , it is often convenient to consider auxiliary

variables
def

mid
i i ix x x  that take values from i to i .

For the case when the dependence 1( )ny f x … x   is given as a black box, there is an algorithm

for estimating the interval [ ]y y that is based on using Cauchy deviates (Kreinovich and Ferson

2004; Trejo and Kreinovich 2001). This method works when the function 1( )nf x … x  is

reasonable smooth and the box 1 1[ ] [ ]n n…x xx x    is reasonably small, so that on this box, we

can reasonably approximate the function f by its linear terms:

mid mid mid
1 1( )n nf x x … x x y y        

where

def

1 1 n ny c x … c x      
def

mid mid mid
1( )ny f x … x  , and

def

i

i

f
c

x






One can easily show that when each of the variables ix takes possible values from the interval

[ i i  ], then the largest possible value of the linear combination y is

1 1 n nc … c          (1)

and the smallest possible value of y is  . Thus, in this approximation, the interval of possible

values of y is [ ] , and the desired interval of possible values of y is mid mid[ ]y y    .

Cauchy distribution with a parameter  is a distribution described by the following density
function:

2 2
( )

( )
x

x





 

  

It is known that if 1 n…   are independent variables distributed according to Cauchy distributions

with parameters i , then, for every n real numbers 1 nc … c  , the corresponding linear

combination 1 1 n nc … c     is also Cauchy distributed, with the parameter  described by the

formula (1).
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Thus, if we for some number of iterations N , we simulate ( )k
ix (1 k N  ) as Cauchy

distributed with parameter i , then, in the linear approximation, the corresponding differences

def
( ) mid ( ) mid ( ) mid

1 1( )k k k
n ny f x x … x x y      

are distributed according to the Cauchy distribution with the parameter  . The resulting values
(1) ( )Ny … y   are therefore a sample from the Cauchy distribution with the unknown parameter

 . Based on this sample, we can estimate the value  .

Simulation can be based on the functional transformation of uniformly distributed sample values:

( ) tan( ( 0 5))k
i i ix r       

where ir is uniformly distributed on the interval [0 1] .

In order to estimate  , we can apply the Maximum Likelihood Method which leads to the
following equation:

   
2 2(1) ( )

1 1

2
1 1

N

N
…

y y 
   

  

The left-hand side of this equation is an increasing function that is equal to 0( 2)N  for 0 

and 2N  for ( )max ky  ; therefore the solution to this equation can be found by applying a

bisection method to the interval ( )0 max ky 
 
 
 .

<<extra copy>>

Trejo and Kreinovich (2000) suggested a Monte Carlo algorithm for computing the interval bound
on black box output f(x1, …, xn) for the case when the inputs x1, …, xn are intervals. Because
Dempster-Shafer structures and p-boxes are, in effect, just collections of intervals, this method can
in principle be naturally generalized to these structures.

We first outline the interval algorithm. Suppose we know that xi  [
ix~ i, ix~ +i], and we

want to compute the upper bound  on the error y~ y, where y~ =f(
1

~x , …, nx~ ) and y=f(x1, …,xn).

If we get this upper bound, we will then compute the interval Y for y as [ y~ , y~ +]. The

following algorithm makes use of deviates from the Cauchy distribution: For k = 1, 2, …, N,
repeat the following:

 Use a standard random number generator to compute n real numbers ri
(k), i=1, 2, …, n, that

are uniformly distributed on the interval [0,1].

 Compute i
(k) = i tan((ri

(k)0.5)).
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 Compute the (Euclidean) length (k)=|| (k) || of the vector (k)=(1
(k), …, n

(k)).

 Compute the normalized coefficient K(k)
norm = (k)/0 (for an appropriate small constant 0).

 Compute the auxiliary vector (k)= (k)/K(k)
norm with components i

(k) = i
(k)/K(k)

norm.

 Substitute
ix~ +i

(k) into the program f and compute c(k)=((k) /0)(f ((
1

~x +1
(k), …, nx~ +n

(k))

y~ ).

 Compute  by applying the bisection method to solve the equation

2
1

1
...

1

1
2)(2)1(

N

cc N




























on the interval [0, max |c(k)| ].

This method works well when the intervals are sufficiently narrow relative to the curvature of the
function evaluated that its nonlinearity in each local interval is small.

It is worth acknowledging that the use of Cauchy distribution in the above algorithm may
seem somewhat counterintuitive. Indeed, in the interval setting, we do not know the exact

probability distribution of each error xi =
ix~ xi, but we do know that each error xi belongs to the

corresponding interval [i, i], so the actual (unknown) probability distribution for xi must be
located on this interval with probability 1. At first glance, then, if we want to design a simulation-

type technique for computing , we should use one of these possible distributions in our
simulations. Instead, we use a Cauchy distribution for which the probability to be outside the

interval [i, i] is non-zero. In other words, in order to make the simulations work, we use the
distributions which are inconsistent with our knowledge. The reason why such impossible
distributions are useful here is that it can be shown that if we select, for simulations, a distribution
within the corresponding p-box, we end up with a wrong estimate because any random sampling
strategy for such a distribution will underestimate its dispersion.

As mentioned above, because any p-box or Dempster-Shafer structure is, in effect, a
collection of intervals with probability masses, it is possible to generalize this black-box algorithm
to handle them as inputs, at least under the assumption that these structures are stochastically
independent of one another. The first step is to translate any inputs that are given as p-boxes to
their associated Dempster-Shafer structures. This should be done in such a way as to minimize the
number of focal elements consistent with a good approximation. This is important because the
execution time of the calculation is a function of the product of the number of focal elements that
must be considered.

Suppose there are D Dempster-Shafer structures S1, S2, …, SD, each having interval focal
elements. Let card(Si) denote the number of focal elements within the ith Dempster-Shafer
structure. To propagate these structures through the black box, create a Cartesian product of the
elements of all D Dempster-Shafer structures (cf. sections <<>> and <<>>). This will be an D-

dimensional array consisting of M elements, where M =  card(Si). Each element of this array has
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two parts, the (interval) location and the (point) probability mass. The probability mass of each
element is computed, under independence among all the inputs, by multiplying the respective
probability masses from the D marginal Dempster-Shafer structures. Because we are assuming that
Dempster-Shafer structures are finite collections, these calculations will always be possible.
Moreover, because the masses of each Dempster-Shafer structure individually summed to one, the
overall sum of the M masses will also sum to one. The second part of each of the M elements in
the n-dimensional array is the solution to an interval-blackbox calculation f(A1, A2, …, An), where
Ai is the respective element of the ith Dempster-Safer structure in the Cartesian product. Because
we are assuming that the focal elements of the Dempster-Shafer structures are intervals, these
calculations will always be possible.

Thus the basic probability assignment of the result of the blackbox propagation of
Dempster-Shafer structures is therefore

 



),...,,( 21

)()(*
nAAAfC

D

i
ii AmCm

where mi is the basic probability assignment for the ith Dempster-Shafer structure. In this
formulation, the summation is of all results C of the black-box calculation that might arise from
different combinations of input focal elements. Note that only the ability to evaluate f(A1, A2, …,
AD) is required; we do not need to know what mathematical operations it entails. In computational
practice, we would not actually bother to perform the summation, but would instead be content
with computing the cumulative plausibility and belief functions, which can be done simply by
remembering all of the left and right endpoints of C’s and cumulating them separately. The
cumulative histogram of the left endpoints forms the estimated cumulative plausibility function,
and the cumulative histogram of the right endpoints forms the estimated cumulative belief function.
This pair of functions is the probability box for the output of the blackbox calculation.

The calculation strategy outlined here is, of course, extremely computationally intensive.
Unless the most advanced computers can be used for the task, it would be unlikely that this
approach could be used if the function evaluation is itself expensive or when the number of input
variables exceeds more than a handful. There are, of course, many strategies that could be
employed to accelerate the calculation. Finding the best of these is the subject of concurrent
research.

It is possible to apply this algorithm without necessarily assuming stochastic independence
among all the input variables. Appealing to the Fréchet (1935) inequality, we could replace the

expression mi(Ai) used to compute the probability mass of each element of the Cartesian product
with the interval expression

[ max(0, 1 – D +mi(Ai)), min mi(Ai) ].

This would discharge all dependence assumptions used in the calculation. It is also possible to
combine independence assumptions for some variables with the general case for others by an
obvious combination of multiplication and Fréchet intervals. The result of this approach would be
to produce a Cartesian product whose masses are not point values but intervals. Although this
appears to constitute a fundamentally generalized kind of Dempster-Shafer structure, it is
associated with an ordinary Dempster-Shafer structure by canonical discretization of the
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cumulative plausibility and belief functions. However, when no precise dependency structure is
assumed, the result is not guaranteed to be best possible and would be expected to overestimate
somewhat the uncertainty in the output Dempster-Shafer structure. This may not be too much of a
problem if, despite this uncertainty inflation, it is still clear that a particular result is acceptable in
its risk management context.

<<extra copy>>

Comparison with sensitivity analysis

It is worth mentioning that the Cauchy deviates method is beneficial only if we have a large
number of inputs D (thus, it is not beneficial to apply this method to the simplified functions

( )a b  or to the spring function).

Indeed, for small D, <<in sequel, n is D>> we can use the following sensitivity analysis method – a

method that is applicable not only for approximately linear functions 1( )nf x … x  , but also for all

functions that are monotonic (increasing or decreasing) with respect of each of its variables.
Specifically, in the sensitivity analysis method:

First, we apply f to the results  
1 n…x x  of direct measurements, resulting in the value


 

1( )ny f …x x   . Then, for each of n inputs ix , we modify this input to i ix x and, leaving

other inputs, apply f again. By comparing the values    
1 1( )ii i nf … …xx x x x      and


 

1( )ny f …x x   , we decide whether f in increasing or decreasing in ix . Finally, we apply f

two more times to get the desired bounds for y as follows: 1( )ny f x … x    and

1( )ny f x … x    , where, for the variables ix for which f increases with ix , we take i ix x 

and i ix x
  , and, for the variables ix for which f decreases with ix , we take i ix x

  and

i ix x  .

Use with nonlinear functions

The Cauchy deviate method can be generalized in a couple of ways for functions that are clearly
nonlinear relative to the breadth of uncertainty in the inputs. Beck (2004) described a second-order
Taylor version of the method that would be appropriate for functions that are approximately
quadratic. However, the generalization needs samples sizes that are roughly the square of those
needed by the linear method as it is essentially a nested approach. This approach is therefore
unlikely to be useful for propagating uncertainty through hard black boxes where the number of
samples is limited.

Another approach when we cannot reasonably approximate f by a linear expression on the entire
box is to divide the box into a few sub-boxes on each of which f is approximately linear. For
example, if the dependence of f on one of the variables xi is strongly nonlinear, then we can divide

the interval ],[ ii xx of possible values of this variable into two (or more) subintervals, e.g.,

],[ mid
ii xx and ],[ mid xxi , and consider the corresponding sub-boxes
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],[],[],[],[],[ 11
mid

1111 nniiiiii xxxxxxxxxx   

and

],[],[],[],[],[ 11
mid

1111 nniiiiiii xxxxxxxxxx   

By using the Cauchy deviates methods, we compute the range of f over each of these sub-boxes,
and then take the union of the resulting range intervals.

Use with other forms of uncertainty

As we have mentioned, the Cauchy deviates method can be used not only to handle the case of
interval uncertainty, it can also be used to handle the case of probabilistic uncertainty. Specifically,

if for each input variable ix , its distribution ( )iF t is located on some interval [ ]i ix x with

probability 1, then we can, in principle, ignore the probability values and simply use the fact that

ix is located on the interval [ ]i ix x . In this case, the Cauchy deviates method produces an interval

[ ]y y that is guaranteed to contain y .

Similarly, we can treat the case when for each ix , we know the p-box [ ( ) ( )]i it tF F that describes

its distribution. Let us assume that the probability distribution ( )i tF is located, with probability 1,

on an interval [ ]i ix x
  , i.e.:

( ) 0i ixF
  , and ( ) 0i ixF    for arbitrarily small 0  ,

( ) 1i iF x
  , and ( ) 1i iF x    for arbitrarily small 0  .

We also assume that the probability distribution ( )i tF is located, with probability 1, on an interval

[ ]i ix x
  , i.e.:

( ) 0i ixF
  , and ( ) 0i ixF    for arbitrarily small 0  ,

( ) 1i ixF
  , and ( ) 1i ixF    for arbitrarily small 0  .

The p-box means that the actual distribution ( )F t is in between ( )i tF and ( )i tF , i.e., that

( ) ( ) ( )ii t F t F tF   . So:

From ( ) 0i ixF
  , we conclude that ( ) ( ) 0i ii iF x xF

   , i.e., that ( ) 0i iF x
  . Thus, with

probability 1, we have i ix x
 . Similarly, from ( ) 1i iF x

  , we conclude that

( ) ( ) 1i ii iF Fx x
   , i.e., that ( ) 1i iF x

  . Thus, with probability 1, we have i ix x
 . Thus, for

every i , with probability 1, we have [ ]i i ix x x
   . Similarly to the probabilistic case, we can
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ignore the probability values and simply use the fact that ix is located on the interval [ ]i ix x
  . In

this case, the Cauchy deviates method produces an interval [ ]y y that is guaranteed to contain y .

Finally, for the Dempster-Shafer case, if we know that ix belongs to the one of the intervals

( ) ( )[ ]k k

i ix x with certain probabilities, then we can ignore these probability and conclude that ix

belongs to the narrowest interval that contains all of these. i.e., to the interval [ ]i ix x , where

( )min k

i i
k

x x and
( )max k

i i
k

x x . In this case, the Cauchy deviates method produces an interval

[ ]y y that is guaranteed to contain y .

In this report, we analyze and compare the existing methods and, if necessary, suggest some
possibly better methods of estimating uncertainty of y from hard black boxes.

5. Optimal statistics under probabilistic uncertainty

Let us formulate the problem in precise terms. We start our analysis with the case of probabilistic

uncertainty. In this case, we have a sample 1 NX … X  taken from an unknown probability

distribution, and we want to estimate this probability distribution ( )F t . To be more precise, we

would like to provide bounds [ ( ) ( )]F t F t on ( )F t that hold with some degree of certainty

(ideally, as large degree of certainty as possible).

There may be different formulations of this problem. A very important case is when there is a

critical threshold 0t for y , then all we are interested in is what is the probability that for our

system, the value y exceeds this critical threshold. In this case, we are not really interested in the

entire probability distribution; all we want to know is the probability critP that 0y t – i.e.,

equivalently, the probability 0 crit( ) 1F t P  that 0y t .

In this case, to estimate the desired value 0( )F t of the unknown distribution function ( )F t from

below, we must find a statistic
0 1( )t NL X … X  (i.e., in mathematical terms, a real-valued function

of N real variables) for which, for
0

def

0 1( ) ( )t nF t L X … X  , we get 0 0( ) ( )F t F t with a

certainty 1   . In other words, we want a function
0 1( )t NL X … X  for which

0 1 0Prob( ( ) ( )) 1t NL X … X F t       (2)

Of course, since 1 NX … X  form a random sample, the statistic
0 1( )t NL X … X  cannot depend on

the order of the values 1 NX … X  , i.e., it must be permutation-invariant.

Similarly, to estimate the desired value 0( )F t of the unknown distribution function ( )F t from

above, we must find a statistic
0 1( )t NU X … X  (i.e., in mathematical terms, a real-valued function
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of N real variables) for which, for
0

def

0 1( ) ( )t nF t U X … X  , we get 0 0( ) ( )F t F t with a

certainty 1   . In other words, we want a function
0 1( )t NU X … X  for which

00 1Prob( ( ) ( )) 1t NF t U X … X       (3)

The statistic
0 1( )t NU X … X  cannot on the order of the values 1 NX … X  either, i.e., it must also

be permutation-invariant.

Among all such statistics, we need to find a pair that is, in some reasonable sense, optimal.

Scale invariance

For each physical quantity, the numerical values Xk depend on the choice of scale for measuring
this quantity. For example, from the physical viewpoint, it is quite reasonable to describe the
strength of an earthquake by its energy E , but when we talk about its consequences, it is much
more convenient to use the logarithmic Richter scale which is some constant times the log of E.
Nonlinear scales are also used in many other application areas, such as in the use of decibels in
electrical engineering to describe noise and amplifier performance, or the in hardness scales of
minerals in the geology. A general overview of different scales and rescalings is given by Suppes
et al. (1971; 1989; 1989).

The physical problem remains the same no matter what scale we use: in the new scale

( )X f X  , the same sample takes the form 1 1( ) ( )n nf X … f XX X     , and the threshold

takes the form 0 0( )f tt  . Since the physical problem remains the same, it is reasonable to require

that the estimates for the probability of exceeding the threshold should not depend on what scale

we use. In other words, it is reasonable to require that
0 0

1 1( ) ( )N t Nt
L … L X … XX X

      , i.e.,

that

0 0( ) 1 1( ( ) ( )) ( )f t N t NL f X … f X L X … X     (4)

for all strictly increasing 1-1 functions f . Similarly, it is reasonable to require that

0 0( ) 1 1( ( ) ( )) ( )f t N t NU f X … f X U X … X     (5)

for all strictly increasing 1-1 functions f .

In Appendix 1, we show that this requirement is not only reasonable, it also follows from our desire

to have optimal statistics tL and tU .

Non-degeneracy

Another reasonable requirement is non-degeneracy. The distribution of X is usually continuous,
so the probability that two random numbers are exactly equal is 0. In practice, a measurement

result has only finite many digits; as a result, we may get identical values i jX X for some

i j , but this identity is clearly a measurement artifact. So, we can safely assume that in reality,
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all the values iX are different. Similarly, we can safely assume that none of the values iX is

exactly equal to the threshold, i.e., 0iX t for all i .

The conclusion from this argument is that both bounds on F(t) depend only on the empirical

distribution function FN(t). Let us show that due to scale-invariance (4)-(5), the estimates
0t

L and

0t
U can only depend on 0( )NF t , i.e., on the ratio k N , where k is the number of the values iF

that are 0t . Indeed, let us assume that we have two different samples 1 NX … X  and

1 N…X X   , with different thresholds 0t and 0t , for which 00( ) ( )NNF t tF  . In other words, we

assume that in each of the two samples, we have exactly

def

00( ) ( )NNk N F t N tF   

values that are smaller than the threshold. Because of this requirement, if we sort each sample, the

corresponding threshold falls exactly in between k -th and ( 1)k  -st values:

(1) ( ) 0 ( 1) ( )k k nX … X t X … X      

(1) ( ) ( 1) ( )0k k n… …tX X X X         

We can easily design a strictly increasing function ( )f x for which

(1) ( ) 0(1) ( ) 0( ) ( ) ( )kkf X … f X f t tX X       

( 1) ( )( 1) ( )( ) ( )k nk nf X … f XX X      

for example, we can construct this function by linear interpolation. For this function f , invariance

(4) leads to
0 0

1 1( ) ( )N t Nt
L … L X … XX X

      , and invariance (5) leads to

0 0
1 1( ) ( )N t Nt

U … U X … XX X
      . Thus, indeed, both statistics are functions only of

( )Nk N F t  .

In short, for every t , the optimal interval [ ( ) ( )]F t F t that contains ( )F t with a given certainty

can only depend on ( )NF t . Since it is reasonable to include the frequency ( )NF t within this

interval, we thus conclude that the optimal estimate must be Kolmogorov-Smirnov-type, with a

interval around ( )NF t whose width only depends on N and on ( )NF t .

Note that these bounds do not have to be identical to the Kolmogorov-Smirnov ones. In the

original Kolmogorov-Smirnov bounds, all intervals [ ( ) ( )]F t F t have exactly the same width. In

general, we may have different widths depending on the actual value of ( )NF t . Moreover, if we

use, e.g., smaller widths for smaller values ( )NF t , we get better estimates for the tails of the

desired distribution.
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6. Analysis of the generalized Chebyshev inequality

It may be somewhat surprising that our analysis of possible methods resulted in techniques similar
to the Kolmogorov-Smirnov-type statistics but not in the use of the generalization of Chebyshev
inequality proposed by Saw et al. (1984). The surprise comes from the fact that, at first glance, the
Saw et al. method has a clear advantage over the Kolmogorov-Smirnov approach: the

Kolmogorov-Smirnov confidence limits provide us with bounds on ( )F t that are only true with a

certain confidence, while the Saw’s method seems to provide us with the bounds that are 100%
guaranteed.

However, as we will now show, this seeming advantage of Saw’s method is based on a
misunderstanding of the corresponding inequality

Prob( ) ( )X f N         

Indeed, what we want is to be able, based on the observed sample (1) ( )NX … X  from a random

variable X with an unknown distribution, to make conclusions about the value

( ) Prob( )F t X t  . At first glance, it may seem that this is exactly what the above inequality is

doing: for example, from the above inequality, we can conclude that

Prob( ) Prob( ) ( )X X f N                

and therefore, that

Prob( ) 1 ( )X f N         

i.e., that ( ) 1 ( )F t f N     for
def

t      .

However, as we will show, in our interpretation of the probability, this inequality cannot be 100%

true. Indeed, consider, e.g., the case when the actual distribution ( )F t is the standard normal

distribution, with 0 mean and standard deviation 1. Let us fix a value 1  , and let us select N to

be sufficiently large so that ( ) 1f N   – i.e., that this inequality does not degenerate into a

meaningless inequality ( ) 1F t  .

Since the function ( )F t is strictly increasing, the inequality ( ) 1 ( )F t f N     is equivalent to

0t t  , where
def

1
0 (1 ( ))t F f N    . Thus, in our interpretation, we would conclude that with

absolute certainty, for N samples from the normal distribution, we have 0t t       ,

where  is the sample average and  is the sample standard deviation. Since 1 0   and

0  , we can thus conclude that 0t  with certainty (i.e., with probability 1).

On the other hand, we know that for the standard normal distribution X (with 0 mean and standard
deviation 1), the sample mean
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1 NX … X

N


 


is also distributed according to the normal distribution, with 0 mean and standard deviation 1 N .

A normal distribution is not localized on any interval. In other words, for a normal distribution, no

matter how large real number 0t we select, there is always a positive probability that the random

value is 0t – and thus, the probability that 0t  is always less than 1.

We thus get a contradiction between the above-described interpretation of Saw’s inequality and the
known facts about the normal distribution. According to the above interpretation of Saw’s

inequality, for normal distribution X , the probability that 0t  is equal to 1; on the other hand,

this same probability must be smaller than 1.

Does this contradiction mean that the paper Saw et al. (1984) is based on a mathematical mistake?
No, the proof is correct; the contradiction simply means that this paper interprets probability

differently from what we want. What we want is, based on a fixed sample 1 NX … X  , to predict

the probability that X is within the certain interval. In other words, we want to bound a probability
over a random variable X , and we want the corresponding bound to hold for all samples. What

the paper is doing is considering the probability over all possible pairs 1( )nX … X X   

consisting of a sample 1 NX … X  and a value X . In other words, we want the probability

1
( )

NX … XF t  corresponding to an individual sample 1 nX … X  , while Saw’s inequality provides us

only with the average
1 1

( )
n nX … X X … XE F t    of the desired probability

1
( )

NX … XF t  over all possible

samples.

Thus, based on their inequality, when we have a single sample 1 nX … X  , we cannot make any

conclusion about ( )F t . We can, however, make a conclusion that is true “on average” if we repeat

this same experiment for multiple samples. For some individual samples, the inequality is true, for
some individual samples, the inequality is false. In other words, contrary to the appearance, this
generalized Chebyshev inequality does not provide us with any guaranteed bounds for X – all we
can hope for is certainty bounds, and this inequality does not even provide us with these certainty
bounds.

The difference between our interpretation of probability and the interpretation implicitly assumed
by Saw et al. (1984) becomes even clearer if we consider the follow-up paper by Konijn (1987).
This paper starts by comparing Saw’s result with a similar previously known result, a result over

which Saw et al. improve: that for every sample 1 NX … X  , with probability ( 1) ( 1)N N    ,

we have (1) ( )[ ]NX X X  , where, as usual in statistics, (1) (2) ( )NX X … X   denotes the

ordering of the sample in the increasing order – so that (1) 1min( )NX X … X   and

( ) 1max( )N NX X … X   .

Let us show that this statement cannot be true in our interpretation of probability. Indeed, let us
assume that it is true for every distribution. In particular, it is then true for the uniform distribution
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on the interval [0 1] . On this uniform distribution, the probability that a random value X belongs

to an interval [ ]a b is equal to the width b a of this interval. Thus, the above statement would

mean that for every sample 1 NX … X  , we have

1 1

1
max( ) min( )

1
N N

N
X … X X … X

N


      



On the other hand, if 1 1 ( 1)X N   and 2 1 1 ( 1) ( 1)X N N N       (the probability of

both inequalities is 1 ( 1) 1 ( 1) 0N N      ), then we have

1 1 2 1

1
max( ) min( )

1
N N

N
X … X X … X X X

N


        



The contradiction shows that both in Saw’s and in Konijn’s papers, the probability is interpreted as
an average probability over all possible samples, not the desired probability based on a single
sample.

The inequality of Saw et al. is probably not useful for propagating aleatory and epistemic
uncertainty through black box models. A more detailed analysis of Konijn (1987) reveals that, in
effect, the approach described in Saw’s and Konijn’s papers leads to a (partially) exact

characterization of the average value
1

def
av ( ) ( )

NX … XF t E F t  : namely, av
( )( ) ( 1)kF X k N   . In

other words, this average is almost identical to the empirical cdf that serves as a base for the
Kolmogorov-Smirnov confidence limits. From this viewpoint, Saw’s inequality does not help us

understand the difference between the actual distribution ( )F t and the empirical distribution
av ( )F t ; in contrast, this inequality is, in effect, a property of the empirical distribution.

So, from the viewpoint of our problem, Saw’s inequality is not helpful at all: instead of using this

inequality that binds the empirical distribution av ( )F t , we can as well take the actual empirical

distribution (as described above) and thus, get the exact expression for av ( )F t , at least for

1 Nt X … X   .

The difference in interpretations also helps to understand a seemingly paradoxical situation
mentioned in Saw et al. (1984) that the generalized Chebyshev inequality sometimes leads to better
bounds than the original Chebyshev inequality. The Chebyshev inequality

2Prob( ) 1 1X               enables us, once we know the exact values of mean

 and standard deviation  , to get guaranteed bounds for ( )F t :

2

1
Prob( ) ( ) ( ) 1X F t F t     


           

where
def

t      and
def

t      .
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If we do not know the exact values  and  , then we cannot use the Chebyshev inequality, but

we can use Saw’s inequality based on the sample mean and sample standard deviation.

In the second case, we have less information than in the first case, so, intuitively, we expect to get
wider bounds that for the original Chebyshev inequality. However, sometimes the bounds produced
by the generalized Chebyshev inequality are narrower. In view of our analysis, however, this is
not a paradox, because the original Chebyshev inequality provides us with the actual guaranteed

bound for ( )F t , while the generalized Chebyshev inequality only bounds the “average” value

of ( )F t . Since the generalized inequality is less informative than the original one, it is no wonder

that it can correspond to a narrower interval: the interval is narrower, but we no longer provide a
guarantee that X is within interval with a certain probability (we only guarantee the average
probability of X being there).

7. Kolmogorov-Smirnov-Type Statistics: Analysis

In this section, we consider which of the Kolmogorov-Smirnov-type statistics we should choose.

In the previous text, we have shown that the optimal way to estimate ( )F t is to use Kolmogorov-

Smirnov-type estimates, i.e., estimates for which, for every t , we generate a confidence interval

[ ( ) ( )]F t F t around the empirical frequency ( )NF t .

In the original Kolmogorov-Smirnov statistic, we simply fix a half-width 0  , and we enclose

each value ( )NF t into an interval [ ( ) ( ) ]n NF t F t    of this half-width. However, within our

result, this is not the only possible choice: we could as well select different widths for different

values ( )NF t . A natural question is: which of the possible Kolmogorov-Smirnov-type statistics

should we choose?

Analysis of the problem

To answer this question, let us analyze the accuracy with which the estimate ( )NF t approximates

the actual value ( )F t . This estimation can be, in effect, reformulated as one of the basic statistical

problems. Indeed, for each t , ( )Nf F t is the frequency, of having X t ; based on this

frequency, we want to estimate the probability ( )p F t that X t .

The problem of estimating the probability p based on the frequency f is a well-known problem

in probability theory, a problem that can be also described as the problem of estimating the
parameter p of the binomial distribution (see, e.g., Dixon and Massey 1969).

It is known that for large N , the difference f p is normally distributed with the mean 0 

and the standard deviation

(1 )p p

N


 
 
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If we know the certainty 1  that we want to achieve, then we can, based on the normal

distribution, find the corresponding coefficient k for which the probability of a normal

distribution to be outside the interval [ ]k k         is exactly  . For example, for

0 05   , we get 2k  , and for 0 1%   , we get 3k  .

Thus, for each p , with certainty 1   , we can conclude that the frequency f belongs to the

interval [ ]p k p k       , i.e., to the interval

(1 ) (1 )p p p p
p k p k

N N
 

 
 
 
 
  

   
     

When p is not too close to 0 or 1, then p f , so (1 ) (1 )p p f f     . Hence, from

(1 )p p
f p k

N


 
    

we can conclude that

(1 )f f
f p k

N


 
    

hence

(1 ) (1 )f f f f
p f k f k

N N
 

 
 
 
 
  

   
      

When p is small, e.g., when 0f  is possible, then this approximate formula would lead to

0p  , which is not necessarily true. For 0f  :

the inequality f p k    is always true, so

the only inequality that we need to check is 0f p k     , i.e., (1 )p p p N   .

Squaring this inequality and taking into consideration that 0p  hence 1 1p  , we conclude

that 2p k N  .

A similar inequality holds for 1p  : 21p k N   . Summarizing:

for small p and for 1p  , the bound on f p is 2k N  ;

for larger p , this bound is (1 )f k f f N     .
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The first bound is larger until these bounds are equal, i.e., until

(1 )f k f f N f k f N          . We know that this happens around 2f k N  , so we

look for the solution of the form 2f z k N   for some z . Substituting this expression into the

above equation, we conclude that 1z z  , i.e., that ( 5 1) 2z    hence

(3 5) 2 0 35z      . Thus:

for 20 35f k N    , we conclude that 2p k N  ;

for 2 20 35 1 0 35k N f k N          , we have

(1 ) (1 )f f f f
p f k f k

N N
 

 
 
 
 
  

   
      

for 21 0 35f k    , we have 21p k N   .

Proposed approach

In our case, we want similar estimates for all N points (1) ( )Ny … y  . In other words, we want to

guarantee that with the certainty 1   , we do not exceed the bounds for each of these N
values. To get the overall probability bounded by  , it is reasonable to make each probability

bounded by N , i.e., select the following values:

for
2

( ) 0 35 N
N

k
F t

N
   , we conclude that

2

( ) Nk
F t

N
 ;

for

2 2

0 35 ( ) 1 0 35N N
N

k k
F t

N N
         

we have

( ) (1 ( )) ( ) (1 ( ))
( ) ( ) ( )N N N N

n N N N

F t F t F t F t
F t F t k F t k

N N
 

 
 
 

  
  

   
      

for
2

( ) 1 0 35 N
N

k
F t

N
    , we have

2

( ) 1 Nk
F t

N
  .

In particular, for a realistic case 0 05   and 50N  , we have 0 1N %   , hence 3Nk  .
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When N is small, then, instead of the above normal distribution formulas, we should use the more

accurate formulas of estimating the parameters of the binomial distribution (see Dixon and Massey
1969).

Convergence

For large N , just like for estimating probability from frequency, the estimating intervals converge

to the actual values of ( )F t , and the widths decrease, in effect, as 1 N .

Actually, the decrease is a little bit slower because, as N increases, we need to take Nk instead

of k . However, since the Gaussian distribution exponentially decreases, the value Nk grows

logarithmically with N , so this growth is much slower than the 1 N decrease.

Comparison with the traditional Kolmogorov-Smirnov statistic

Is what we are proposing better than the traditional Kolmogorov-Smirnov statistic? Yes, and here is
why: in Kolmogorov-Smirnov statistic, in effect, we pick the width in such a way that even for the

case of the largest  (i.e., for ( ) 0 5NF t   ), we still fit within the tolerance bound (e.g., 2 sigma or

3 sigma).

For much smaller ( )NF t , the traditional Kolmogorov-Smirnov statistic uses the exact same width.

However, e.g., for ( ) 0 05Nf F t   , the standard deviation of the difference p f is

proportional to 0 05 0 95 0 22     and is, thus, more than twice smaller than the standard

deviation at 0 5f   which is proportional to 0 5 0 5 0 5     . Thus, the certainty bound that is a

3 sigma bound for ( ) 0 5NF t   becomes a 6 sigma bound for ( ) 0 05NF t   . The probability of

exceeding 6 sigma is so miniscule ( 610 % ) that we can safely decrease this bound by, say, 50%,

and still get the exceeding probability much smaller than at ( ) 0 5NF t   .

In other words:

In the traditional Kolmogorov-Smirnov formula, we can drastically decrease the widths of the

certainty intervals corresponding to small values ( )nF t without changing the overall certainty

level.

In the propose statistic, the width of a certainty interval at each value t is already adjusted to make

sure that it is not too wide.

8. Analysis of the Cauchy deviate method

It is important to note first that the Cauchy deviate method does not propagate probabilistic
uncertainty. Our analysis of the case of probabilistic uncertainty showed that for this uncertainty,
Kolmogorov-Smirnov-type methods are better. Thus, the Cauchy deviates methods are not the
recommended choice here. This conclusion makes perfect sense, because the proposed use of the
Cauchy deviates technique ignores all the information about the probability distributions and thus,
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can only lead to inferior estimates. However, in contrast to the case of probabilistic uncertainty,
where Cauchy deviates methods are not recommended, these methods are highly recommended for
the case of interval uncertainty. As we have mentioned, in the case of interval uncertainty, if the
function can be reasonably approximated by a linear expression, we can use the Cauchy deviates

techniques to estimate the desired parameter  : the width of the interval of possible values of y .

In the previous descriptions of the Cauchy deviates method (Kreinovich and Ferson 2004; Trejo
and Kreinovich 2001), we concentrated on finding the number of iterations N that would provide

the desired accuracy (usually, 20% accuracy in estimating  ). The difference between the actual

value  and its estimate

 is distributed, for large N , according to normal distribution, with 0

mean and standard deviation 2e N     . Thus, e.g., to get a 20% accuracy 0 2   with 95%

certainty (corresponding to 2 e ), we need 200N  runs.

After 200 runs, we can conclude that


1 2     with certainty 95%.

What if we cannot perform this many sample evaluations of the black box? It may not be possible

to run the program f 200 times. In this case, we can still use the Cauchy deviates estimates, but

we need to come up with new formulas that translate the numerical estimate into the enclosure for

 . If N is large enough so that the difference

   is still Gaussian, we can conclude that


0

2
1 k

N

 
 
 
 
 
 

     

(where 0 2k  ), with certainty 95%. (If we want, e.g., 99.9% certainty, which corresponds to 3

sigma, then we should take 0 3k  .) Thus, e.g., for 50N  , we conclude that


1 4     . This

may yield a workable estimate.

Very few evaluations

When the number of iterations is even smaller, then we can no longer assume that the distribution

of the error

   is Gaussian. In this case, to find the bounds on  with, e.g., 95% certainty, we

must perform numerical experiments. The possibility of such experiments is caused by the fact
that, as we have mentioned in the above description of the Cauchy deviates method, the distribution

of the results ( )ky always follows the Cauchy distribution, no matter how small N is.

So, to find out the confidence bounds on the Cauchy deviate estimates, it is sufficient to make

experiments with the Cauchy distribution. The Cauchy distribution with a parameter  can be

obtained by multiplying the Cauchy-distributed random variable with parameter 0 1  by the

number  . Thus, it is sufficient to test the method on Cauchy deviates with parameter 1.
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For each N and  , we want to find ( )k N  for which


( )k N      with certainty 1  ,

i.e., for which


(1 ( ))k N       with probability 1  . Since we will be using Cauchy

distribution with 1  , we must thus find ( )k N  for which


1 ( )k N     with probability

1  .

To find such value, we do the following. We pick a large number of iterations M (the relative

accuracy of our estimate of ( )k N  will be 1 M  ). Then:

For each m from 1 to M :

we simulate Cauchy distribution (with parameter 0 1  ) N times, producing N numbers

( ) ( ) ( ) ( )
1 1tan( ( 0 5)) tan( ( 0 5))m m m m

N Ny r … y r             

we then apply the above Maximum Likelihood Method to find 
m

as the solution to the following

equation:

 

2 2

( )( )
1

1 1

2
1 1

mm
N

m m

N
…

yy 

   
   
    
   

    

we solve this equation by applying a bisection method to the interval

( )0 max m
i

i
y

 
 
  
 

After that, we sort the values 
m

into an increasing sequence

 
(1) ( )M

…  
 

We take the value 
( )M

for which the probability to be greater than this number is exactly 1  ,

and estimate ( )k N  as 
( )

1
M




.

Simulation results
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We wrote a C program that implements this algorithm; this program is listed in Appendix 2. For

0 05   , the results of applying this program are:

For 20N  , we get 1 7k   , which fits very well with the above Gaussian-based formula

norm 1 2 2 20 1 7k       .

For 10N  , we get 2 1k   , which is slightly higher than the Gaussian-based formula

norm 1 2 2 10 1 9k       .

For 5N  , we get 5k  , which is already much higher than the Gaussian-based value

norm 1 2 2 5 2 3k       .

9. Sampling entire distributions

Various sampling-based schemes have been proposed that might be used to extend the methods of
uncertainty projection based on Dempster-Shafer evidence theory and probability bounds analysis
to black boxes. For example, Helton et al. (2004a,b) suggested decomposing the problem into a
Cartesian product (à la Yager 1986) and solving the resulting matrix of interval problems by using
black box sampling to estimate the ranges of these intervals with the observed ranges of the sample
outputs. The approach is designed for problems involving Dempster-Shafer inputs, but it can be
immediately applied to problems with p-boxes using the basic conversions described in Ferson et
al. (2003). In principle, various ancillary strategies might be used to accelerate the convergence of
this approach, such as methods that take account of overlap among the input intervals or the likely
association of extreme values of the output variables with extreme values of the input variables, or
employ strategic simplifications to reduce the dimensionality of the problem (Helton et al. 2006c).
The approach was illustrated for a problem involving an algebraic expression in Helton et al.
(2004b), and for a much more complex problem involving competing failure risks of strong and
weak switches in Helton et al. (2004a).

Bruns et al. (2006a) described an alternative direct sampling approach called “optimized parameter
sampling”. This approach can be applied in situations where the inputs are “parameterized” p-
boxes, which are essentially collections of distributions of a given shape (such as normal) specified
by one or two parameters from within given intervals. In an outer sampling loop, distributions are
selected from all the k input p-boxes by randomly picking the scalar parameter values from their
respective intervals. For each collection of k (precise) probability distributions, sampling-based
techniques are employed in an inner loop to solve the twin optimization problems of finding the
upper and lower bounds on the expectation or any percentile of the result. Bruns et al. (2006a)
illustrated the sampling strategy and evaluated its efficiency on a problem estimating the first
passage time for a thermocouple temperature.

Bruns et al. (2006b) also described yet another direct sampling approach called p-box convolution
sampling, although it can be applied immediately to Dempster-Shafer structures too. It involves
taking random samples from each of the k inputs. A random sample from an uncertain number is
the interval corresponding to the (r 100)th percentile where r is a random number uniformly
distributed on the unit interval [0,1]. This generalizes the selection of a random value from a
precise probability distribution (Ferson and Ginzburg 1995; Cooper et al. 1996). These k intervals
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are then projected through the black box model using sampling-based optimization techniques to
find the largest and smallest output values given the input intervals, or the Cauchy-deviate
sampling strategy described by Trejo and Kreinovich and (2001).

It does not seem possible to account for uncertainty about dependence among the inputs by
generalizing the approach of Helton et al. (2004a,b) or either the optimized parameter sampling* or
p-box convolution sampling approaches of Bruns et al. (2006a,b). Even if it is possible to relax
this restriction, all of these entire distribution sampling approaches will remain computationally
intensive and would likely produce reliable results only when fairly many sample evaluations of
the black box can be made. Despite their limitations and computational costs, these sampling
approaches could make the new methods workable for a variety of problems in engineering. These
methods of sampling entire distributions convert the problem of propagating uncertainty
characterized by Dempster-Shafer structures or p-boxes into several easier problems of propagating
precise probability distributions with pure aleatory uncertainty.

Bernardini and Tonon (2008) describe a way to convert any p-box or Dempster-Shafer structure to
a list of extreme distributions associated with the credal set, that is, the space of all distribution
functions consistent with a specified p-box or Dempster-Shafer structure. The theory of imprecise
probabilities (Walley 1990) holds that it is these extremal distributions that determine the possible
ranges of the mean, tail risks and other features of the combination of epistemic and aleatory
uncertainty. It is not yet clear how this ability to identify the extreme distributions of the credal set
can be used to inform a practical strategy for calculation, although

10. P-boxes and Dempster-Shafer knowledge bases

In the previous sections, we described and analyzed different methods for estimating uncertainty in
the cases when we have probabilistic or interval uncertainty in the inputs. What if the uncertainty in

each input ix is characterized, e.g., by the Dempster-Shafer knowledge bases?

One reason why this problem is difficult is that it is not even clear how we can represent the
Dempster-Shafer knowledge base corresponding to the output. Indeed, a Dempster-Shafer

knowledge base for each input variable ix means that we may have different intervals
( ) ( )[ ]k k

i ix x ,

with different probabilities ( )k
ip . For each combination of intervals,

1 1( ) ( ) ( ) ( )

1 1[ ] [ ]n nk k k k

n n…x xx x    

*Bruns et al. (2006a) suggested that the optimized parameter sampling approach does not generalize to
account for uncertainty about distribution family or to general Dempster-Shafer structures. However, this
generality might be possible by devising a scheme for “sampling” discrete probability distributions from a
non-parametric uncertain number. The theory of Chebyshev systems (Karlin and Studden 1966) suggests
that the bounds on uncertain numbers are set by degenerate discrete probability distributions having mass
only on a minimal number of points. It should be possible to generate example distributions that are
consistent with given p-boxes or Dempster-Shafer structures.
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we can use the known techniques to find the corresponding interval 1 1( ) ( )
[ ]n nk … k k … k
y y

   
 for the

output. Since we know the probability ( )ik
ip of each interval

( ) ( )[ ]i ik k

i ix x , and we assume that these

probabilities are independent, we can compute the probability 1( )nk … kp  
of the corresponding output

interval as the product 1 1( ) ( )( )
1

n nk … k kk
np p … p     .

At first glance, this may sound like a reasonable solution to our problem, but in reality, this
solution is not practical at all: even in the simplest case, when for each variable, we have two

possible intervals, for 50n  inputs, we will have an astronomical number of 50 152 10 output

intervals 1 1( ) ( )
[ ]n nk … k k … k
y y

   
 .

Thus, although the resulting uncertainty is still a Dempster-Shafer uncertainty, we can no longer
represent it as we represented the uncertainty for each input: by listing all the intervals and the
corresponding probabilities.

Thus, not only it is not clear how to compute the resulting uncertainty, it is not even clear what
exactly we want to compute.

Our idea comes from the fact that the Dempster-Shafer uncertainty is a generalization of interval

uncertainty, a generalization in which, for each inputs ix , instead of a single interval [ ]i ix x , we

have several possible intervals
( ) ( )[ ]k k

i ix x , with different probabilities ( )k
ip . For the interval

uncertainty, in a realistic case when the black-box function is linearizable, we can use the Cauchy
deviates method to estimate the interval uncertainty of the output. Let us see whether it is possible
– at least, under some reasonable assumptions – to extend the Cauchy deviates method to the more
general Dempster-Shafer case.

The fact that the black-box function is linearizable means that we have




1
1

( ) ( )
n

n i i i
i

f x … x y c x x


      

where


 
def

( )n ny f …x x  and for every i , ic denotes the (unknown) value of the partial derivative

if x  of the black-box function 1( )nf x … x  with respect to i -th input ix .

If we know the exact values 1 nx … x  of all the inputs, then we can simply plug in the values ix

and get the desired value.

If for each i , we know the interval mid mid[ ]i i i ix x x     , then, in the linearized case described

above, the corresponding range of y can be described by the interval mid mid[ ]y y    , where:

 mid mid

1

( )
n

i i
i

i

y y c y y


     (6)
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1

n

i i
i

c


      (7)

In the Dempster-Shafer case, for each i , instead of a single pair mid( )i iy  , we have different pairs

with different probabilities. Due to the formulas (6) and (7), the vector ( )y   is a linear

combination of the vectors mid( )i iy   corresponding to different inputs ix .

If one of these vectors was prevailing, then we would have a single input (or a few dominating
inputs), and there would be no need to consider the uncertainty in all n inputs. Thus, the only case

when this problem makes sense is when the contributions of all n vectors is approximately of the

same size (or at least the same order of magnitude). In this case, the vector mid( )y   is a linear

combination of n independent vectors of approximately the same size.

This situation is exactly the case covered by the Central Limit Theorem, the case when in the limit
n  , we have a normal 2-D distribution and hence, for sufficient large n , with a good

approximation, we can assume that the pair mid( )y   is normally distributed.

Note that, strictly speaking, the distribution is almost normal, but it is not exactly normal. From the

purely theoretical viewpoint, the distribution of the pairs mid( )y   cannot be exactly normal,

because the interval half-width  is always non-negative, while for every normally distributed
random variable, there is a non-zero probability that this value attains negative values. However,

in practice, every normal distribution with mean  and standard deviation  is located within the

interval [  k ,  + k ] with practically a certainty, i.e., with probability  1. This means that,

for 3k  , the probability to be outside the 3 sigma interval is 0 1%  , and for 6k  , the

probability to be outside the 3-sigma interval is 610 % , etc. Thus, if   k , then, for all

practical purposes, the half-width  is indeed always non-negative.

It is therefore reasonable to conclude that for large n , the uncertainty in y can be characterized as

follows: we have different intervals mid mid[ ]y y    , and the probability of an interval is

described by a 2-D normal distribution on the mid( )y   plane. To describe a 2-D normal

distribution, it is sufficient to know 5 parameters: the means and standard deviations of both
variables and the covariance (that describes their dependence). At first glance, it may seem like we
are abandoning our approach: we started with the idea of having non-parametric estimates, and we
ended up with a 5-parametric family. However, realistically, to exactly describe a generic
distribution, we must use infinitely many parameters. In reality, we only have finitely many runs of

the black-box function f with reasonable accuracy, and based on their results, we can only

estimate finitely many parameters anyway.

Even in the ideal case of Monte Carlo tests, we need N experiments to get a value of each

parameter with an accuracy of 1 N . Thus, to get a reasonably low accuracy of 30% (everything

worse makes it order-of-magnitude qualitative estimate), we need 10 runs. With 50 runs, we

can therefore determine the values of no more than 5 parameters anyway. The above 5-parametric
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family is reasonable, its justification is very similar to the common justification of the use of
Gaussian distributions.

Determining the parameters

How can we determine the parameters of this model. If we simply take the midpoints ( )midk
ix of

the corresponding intervals in our simulations, then the resulting value ( )ky are normally

distributed, with the distribution corresponding to midy . We can therefore estimate the mean and

standard deviation of midy as simply the sample mean and the sample variance of the values
(1) (2)y y … 

For  , from the formula (7), we conclude that

1

[ ] [ ]
n

i i
i

E c E


      (8)

and

2 2

1

[ ] [ ]
n

i i
i

c 


       (9)

Due to the formula (8), we can use the Cauchy deviates technique to estimate [ ]E  if for each

input ix , we use the average half-width

(1) (1) (1) (1)[ ]i i i i iE p p …     

of the corresponding interval.

Due to the fact that 2 2
i ic c   , the formula (9) means that we can compute [ ]  by using the

standard Monte Carlo simulation technique: namely, we simulate ix to be normally distributed

with 0 mean and standard deviation [ ]i  , then the resulting value of i iy c x   is also

normally distributed, with the standard deviation equal to (9). We can thus estimate (9) as a sample

variance of the corresponding simulated values ( )ky .

We thus know how to estimate 4 of 5 parameters that describe the desired uncertainty. The only

remaining problem is how to estimate the covariance between midy and  . For this, we propose

the following idea.

The non-zero covariance means, in particular, that the conditional average mid mid[ [ ]]E y E y 

of  over the cases when midy is smaller than its average mid[ ]E y is different from the

conditional average mid mid[ [ ]]E y E y  of  over the cases when midy is larger than its
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average mid[ ]E y . From the difference between these two conditional averages, we can determine

the desired value of the covariance.

To compute the conditional averages, we can use the Cauchy deviates idea. Namely, at each

simulation, for each variable ix , we select one of the intervals
( ) ( )[ ]k k

i ix x with the corresponding

probability ( )k
ip , and we apply the black box function f to the centers of the corresponding

intervals, to get the result midy . We then apply the Cauchy techniques with the corresponding

intervals and get the value distributed according to the Cauchy distribution with the width

corresponding to selected intervals for ix .

The main difference between what we propose to do here and the previously described Cauchy
deviates methods is that, in the previously described Cauchy deviates method, we combine all the

results of Cauchy simulation into a single sample, and we then compute the parameter  based on
this sample, but, in the proposed methods, we separate the results of Cauchy simulation into two

different samples, that is, a sample containing all the cases in which mid mid[ ]y E y , and a sample

containing all the cases in which mid mid[ ]y E y .

In the previous described approach, in all simulations, we had the same interval width, so the
results of the simulation belong to the same Cauchy distribution. In the new method, we have
different widths with different probabilities, so the resulting distribution is a combination of
different Cauchy distributions, with different probabilities.

For each sample, we can safely assume that the distribution of the width  is a Gaussian
distribution, with mean  and standard deviation  . Thus, our sample corresponds to the

combination in which the Cauchy distribution with parameter  occurs with the Gaussian
probability density

2

2

1 ( )
exp

22



 

  
   

   

Cauchy-distributed random variable  with the parameter  can be described by its characteristic

function [exp(i )] exp( )E        . Thus, the above-described probabilistic combination of

Cauchy distributions can be described by the corresponding probabilistic combination of these
characteristic functions:

2

1
[exp(i )] exp exp( )d

22
E


  

 

  
           

   
 (10)

As we show in Appendix 3, this integral is equal to:

2 21
exp

2
   

 
       

 
(11)

We can estimate the characteristic function by its sample value
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( )

1

1
[exp(i )] cos( )

N
k

k

E y
N

  


    

(Since the expression (11) is real, it makes sense to only consider the real part of exp(i )   , i.e.,

cos( )  .)

So, we arrive at the following algorithm for computing  and  from the sample values
(1) ( )Ny … y  :

for different real values 1 0k…    , compute
def

( ) ln( ( ))k kl c  , where

def
( )

1

1
( ) cos( )

N
k

k
k

c y
N

 


  

use the Least Squares Method to find the values  and  for which

2 21
( )

2
k k kl        

The resulting value  is the average  .

Thus, when we repeat this algorithm for both samples, we get the two desired conditional averages

of  – from which we can then compute the covariance.

Application to p-boxes

It is known that a p-box can be described as a Dempster-Shafer knowledge base (Ferson et al.

2003). A p-box [ ( ) ( )]F t F t is a generalization of a cumulative distribution function F(t). A

cumulative distribution function can be represented by an explicit formula, or it can be represented
by listing the quantiles corresponding to different probability levels. For instance, one could list all
the percentiles for probability levels p = 0, 0.01, 0.02, …, 0.99, 1. A sufficiently finely discretized
list would be useful for almost any practical application. In mathematical terms, quantiles are the

values of the inverse function f (p) = F1(p). Using equally spaced probability values, each p far

apart, a variable with a probability distribution ( )F t can be approximately described by the values

f(0), f(p), f(2p), etc. The discretization suggests that the variable takes on each of these quantiles

with equal probability p . Similarly, a p-box can be alternatively represented by listing, for each

p , the interval [ ( ) ( )]f p f p of the possible quantile values where the function ( )f p is an

inverse function to ( )F t , and the function ( )f p is an inverse function to ( )F t . Because of this

description, we can interpret the p-box as the Dempster-Shafer knowledge base, in which, with

equal probability p , we can have intervals [ (0) (0)]f f , [ ( ) ( )]f p f p   , etc. Thus, whatever

method we have for Dempster-Shafer knowledge bases, we can apply it to p-boxes as well.



41

How can we describe the resulting p-boxes? We have just mentioned that, in principle, we can
interpret each p-box as a Dempster-Shafer knowledge base, and apply the above Dempster-Shafer
method to describe the uncertainty of the output. The result, however, is a Dempster-Shafer
knowledge base. How can we describe the corresponding “Gaussian” Dempster-Shafer knowledge
base as a p-box?

For a Dempster-Shafer knowledge base, i.e., for a probabilistic distribution on the set of intervals

[ ]x x , the probability ( ) Prob( )F t X t  attains its largest possible value ( )F t if for each

interval, we take the smallest possible value x . Similarly, the probability ( ) Prob( )F t X t 

attains its smallest possible value ( )F t if for each interval, we take the largest possible value x .

Thus, ( )F t is a probability distribution for the lower endpoints miny   , and ( )F t is a

probability distribution for the upper endpoints miny   of the corresponding intervals. Since the

2-D distribution of the pairs mid( )y   is Gaussian, the distributions of both linear combinations
miny   and miny   are Gaussian as well. Therefore, as a result of this procedure, we get a p-

box [ ( ) ( )]F t F t for which both bounds ( )F t and ( )F t correspond to Gaussian distributions.

Strictly speaking, the distributions are almost normal but not exactly normal. Let us denote the cdf

of the standard Gaussian distribution, with 0 mean and standard deviation 1 by 0( )F t . Then, an

arbitrary Gaussian distribution, with mean  and standard deviation  , can be described as

0( ) (( ) )F t F t     . In particular, if we denote the mean and the standard deviations of the

Gaussian distribution ( )F t by  and  , and the mean and the standard deviations of the

Gaussian distribution ( )F t by  and  , then we conclude that 0( ) (( ) )F t F t     and

0( ) (( ) )F t F t     . From the theoretical viewpoint, for thus defined functions ( )F t and

( )F t , we cannot always have ( ) ( )F t F t , because, due to monotonicity of 0( )F t , this would be

equivalent to

t t 

 

 


for all t , i.e., to one straight line being always below the other – but this is only possible when they

are parallel.

However, as we have mentioned while describing the similar situation with the Dempster-Shafer
knowledge bases, in practice, we can have this inequality if we ignore the values t for which

0( )F t is very small, and therefore not practically possible. Alternatively, we can assume that the

inequality ( ) ( )F t F t holds for all t – but the distributions ( )F t and ( )F t are only

approximately—although not exactly—normal.

This approach can also be applied if we have different types of uncertainty for different inputs. If
we have different types of uncertainty for different inputs, we can transform them to p-boxes, and
hence to Dempster-Shafer knowledge bases, and use a similar approach.
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11.Conclusions

When the uncertainty about model inputs is purely aleatory and characterized by probability
distributions, traditional Monte Carlo methods can be used to estimate the distributions of the
output variables from a black box. Assuming the samples were selected at random (i.e.,
independently of each other), confidence bands can be computed for the empirical distributions of
the output values that conservatively characterize the epistemic uncertainty about that output given
the limited number of Monte Carlo replications that could be computed. When the number of
samples grows large, these bands converge to the true distribution of the output variable which is
some convolution of the input distributions. The confidence bands can be selected to have any
prescribed coverage probability, i.e., the probability that the true falls entirely within the computed
confidence bands. The confidence bands may incorporate assumptions about the distribution shape
of the output quantity or they may make no a priori assumption about that shape. In principle,
these bands may be computed from any number of sample evaluations of the black box, although at
least five samples are necessary for the bands to be non-trivial.

When the uncertainty about the model inputs is purely epistemic in nature and characterized by
intervals, several related methods can be to estimate the interval range of an output variable from
the black box model so long as the function in the black box is mathematically well behaved. For
instance, if the model is linear over the uncertain variables, then as few as D + 1 evaluations of the
black box may be needed to compute the range of the output. If the model is approximately linear,
then this strategy will yield approximate results. If the model is not approximately linear, but is
monotone in each uncertain variable, then 2D evaluations would be needed to compute the output
range. If the black box function is decidedly nonlinear, but can be approximated by a piecewise
linear function with P segments, then these strategies can be used on each segment with the final
result taken as the union over the segment results. In this case, P(D+1) evaluations of the black
box would be needed. Such directed sampling is useful when the number of uncertain inputs is
small relative to the cost of each evaluation of the black box. When the number of uncertain
variables D is very large, however, this approach may not be practical. In such cases, if the black
box function is approximately linear over the range of interval uncertainty, then the Cauchy deviate
method (section <<>>) can be used. The coverage characteristics of this approach are approximate
if the function is only approximately linear. Its level of conservativism can be prescribed by the
analyst.

When the model inputs have both aleatory and epistemic uncertainty, the problem becomes much
more complex, and no single method seems to be preferable for use in the black box problem. The
table below summarizes the performances of several possible schemes for projecting mixed
uncertainty through black boxes in terms of each method’s conservativism, statistical coverage
properties, whether it eventually convergence to the true answer, and cost in sample evaluations.
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Method

condense & interval

supp-core interval

entire distribution sampling

Saw-Yang-Mo inequality

uniformity principle*

u,v-sampling

u,end-sampling

u-sampling & interval

confidence & u,v-sampling

confidence & u,end-sampling

confidence & u-sampling &
interval

Conservative

Yes

Yes

Maybe

No

Yes

No

No

Maybe

Maybe

Yes

Coverage

Approximate

Approximate

Approximate

No

No

No

No

No

Yes

Convergence

No

No

Yes

No

No

Yes

Yes

Yes

Yes

Cost

K

2K

MD

any

MDL

DK

MDL

DK

The first column in the table names the various methods considered in this report. When “interval”
is mentioned as part of the method name, it refers to any of the related interval propagation
schemes discussed in section <<>> such as those for linear or monotone functions, the Cauchy
deviate method or its variants. When “confidence” is mentioned, it refers to any of the procedures
for confidence bands about distribution functions such as the Kolmogorov-Smirnov method or
related distributional methods discussed in section <<>>. The second column indicates whether
the method yields a conservative result that would be appropriate for an outside-in approximation
strategy. The coverage column indicates whether the result has a guaranteed statistical
performance, i.e., whether an analyst can prescribe the probability with which the true distribution
function will lie entirely inside the computed result. The notation in the convergence column tells
whether the result of applying the method when there are asymptotically many samples converges
to the correct answer that would be obtained with a best-possible analysis using intrusive methods.
Finally, the cost column gives an indication of the relative cost of applying the method, where K
denotes the cost in sample evaluations of propagating intervals (such as by the direct sampling or
Cauchy deviate methods), M is the number of sample evaluations needed to project a probability
distribution, D is the number of uncertain inputs.

Inequality of Saw et al.

The generalization of the Chebyshev inequality proposed by Saw et al. (1984) at first seemed very
promising as a way for an analyst to escape specifying the particular shape of the underlying
distribution. It seemed to promise to give a conservative answer over all possible distribution
shapes even when the number of samples is small. Such a method would be ideal for propagating
uncertainty through a black-box model. Even substantial conservativism might be a cost worth
paying for a distribution-free method to rigorously assess tail risks from small samples. However,
analysis of the inequality reveals that this seeming advantage is based on a misunderstanding,
whose origin lies in different interpretations of probability that are in common circulation.
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In fact, the difference in interpretations also explains why the Saw inequality sometimes leads to
tighter bounds than the original Chebyshev inequality (a real anomoly since the original bounds are
best possible). Thus, the inequality proposed by Saw et al. (1984) is arguably not really a
generalization of the classical Chebyshev inequality. Instead, it might better be thought of as
merely being inspired by it, but answering a completely different question. Although the question
it answers might be interesting for some applications under a subjectivist interpretation of
probability, it does not provide the answers we are seeking when we propagate aleatory and
epistemic uncertainties through black boxes. It is evident that the inequality of Saw et al. is not
useful for the black box problem.
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Appendix 1: Optimal estimates of F(t) are scale-invariant

We analyze the following question: which statistic for estimating F(t) is the best? When we say
“the best”, we mean that on the set of all such statistics, there must be a relation  describing

which statistic is better or equal in quality. This relation must be transitive (if A is better than B ,

and B is better than C , then A is better than C ). This relation is not necessarily asymmetric,

because we can have two statistics of the same quality. However, we would like to require that this

relation be final in the sense that it should define a unique best statistic optL , i.e., the unique

statistic for which opt( )L L L  . Indeed, if none of the statistics is the best, then this criterion is of

no use, so there should be at least one optimal family.

If several different statistics are equally best, then we can use this ambiguity to optimize something
else: e.g., if we have two statistics with the same approximating quality, then we choose the one
which is easier to compute. As a result, the original criterion was not final: we get a new criterion

( newA B if either A gives a better approximation, or if oldA B and A is easier to compute),

for which the class of optimal statistics is narrower. We can repeat this procedure until we get a
final criterion for which there is only one optimal statistic.

It is reasonable to require that the relation A B should not change after rescaling.

Definition 1. Let 0N  be an integer. By a N -sample statistic, we mean a function
1( )NL R R

  that maps ( 1)N  -tuples of pairwise different real numbers 0 1 Nt X … X   into

a real number, and that is invariant under all possible permutations of 1 NX … X  .

Definition 2. By an optimality criterion, we mean a transitive relation  on the set of all N -

sample statistics. We say that a criterion is final if there exists one and only one optimal statistic,

i.e., a statistic optL for which opt( )L L L  .

Definition 3. By a rescaling, we mean a strictly increasing 1-1 function f R R  . For every

statistic L and for every rescaling f , the result ( )f L of applying f to L is defined as follows:

def

1 ( ) 1( ( )) ( ) ( ( ( ))t n f t Nf L X … X L f X … f X    

Definition 4. We say that a criterion  is scale-invariant if for every rescaling f and for every

two statistics L and L , L L implies ( ) ( )f L f L .

Proposition 1. Let  be a final scale-invariant optimality criterion. Then, the corresponding

optimal statistic optL is scale-invariant.

Proof. This proof is similar to the ones given by Nguyen and Kreinovich (1997). Indeed, let f be

an arbitrary rescaling. Since optL is optimal, i.e., better than every other statistic, we conclude that

for every other statistic L , we have 1
opt ( )L f L (where 1f  means the inverse rescaling
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transformation). Since the optimality criterion  is invariant, we conclude that
1

opt( ) ( ( ))f L f f L L  , i.e., opt( )f L L .

Since this is true for every statistic L , the statistic opt( )f L is also optimal. But since our criterion

is final, there is only one optimal statistic and therefore, opt opt( )f L L . In other words, the optimal

statistic is indeed scale-invariant. The proposition is proven.
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Appendix 2: C program for the Cauchy deviates method for small N

// This program estimates the bounds for Cauchy estimates for given values N and alpha

include <stdio.h>
include <stdlib.h>
include <time.h>
include <math.h>

define N 20 //number of iterations N to estimate the accuracy
define alpha 0.05 //confidence level
define M 10000 //number of iterations
define PI 3.1415926535897932384626433832795

double simulate(void)
double deltay[N+1];
double r; // uniform random variable on [0,1]
double deltaminus; // lower bound for the desired delta
double deltaplus; // upper bound for the desired delta
double delta; // desired value of delta
double sum; // auxiliary sum (should equal to N/2 in the equation for delta)
int i; // auxiliary variable used for loops

// simulating Cauchy distributed values
for (i = 1; i <= N; i++)

// simulated uniform distribution on [0,1]
r = (double) rand() / (double) RANDMAX

// transform uniform deviate into Cauchy deviate
detay[i] = tan(PI * (r – 0.5));

// upper bound for delta is set at max of deltay[i]
deltaplus = 0.0;
for (i=1; i <= N; i++)
if (deltaplus < fabs(deltay[i])) deltaplus = fabs(deltay[i]);

// lower bound for delta is set at 0
deltaminus = 0.0;

// finding delta by bisection; we stop when the lower bound
// for delta is within 5while (deltaminus < 0.95 * deltaplus)
// compute the midpoint of the interval [deltaminus,deltaplus]
delta = (deltaminus + deltaplus) / 2;

// compute the value of the sum at this midpoint
sum = 0.0;
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for (i = 1; i <= N; i++) sum = sum + (delta*delta)/(delta*delta + deltay[i]*deltay[i]);

// depending on whether this sum is > N/2 or < N/2 conclude
// that delta belongs to the corresponding half-interval
if (sum > (N / 2)) deltaplus = delta;
else deltaminus = delta;
return delta;

int main(void)
double delta[M + 1]; // simulation results
int i,j; // auxiliary variables for loops
double smallest; // auxiliary variables for sorting
int location; //
double temp; // temporary variable for a swap
int index = (int) (alpha * (double) M); //computing alpha * M

// seeding the random number generator
srand( (unsigned)time( NULL ) );

//generating the simulated values delta
for (i = 1; i <= M; i++) delta[i] = simulate();

//sorting the simulated values delta
for (i = 1; i <= index; i++)

//find smallest values among i, i + 1, ...
smallest = delta[i];
location = i;
for (j = i; j <= M; j++)
if (delta[j] < smallest) smallest = delta[j];
location = j;

// placing the smallest value in ith place by swapping the current
// value delta[i] with the place where this smallest value is located
temp = delta[i];
delta[i] = smallest;
delta[location] = temp;

printf("index is:
printf("k is:
return 0;
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Appendix 3: Characteristic function for combination of Cauchy variates

The integrated expression from (10) has the form

1
exp( )

2
Q

 
  

 

where

2def

2 2

( ) 1

2 2
Q Q




 

 
      

and

def
2 2 2 2 2( ) 2 2 ( )Q                         

Thus, by separating the full square, we conclude that

2 2 2 2 2 2 2 4 2 2( ) ( ) ( ) 2Q                                           

Therefore,

2 2 2 2

2 2

1 1 1
( )

2 2 2
Q Q       

 
                 

Hence, the integrated expression is equal to

2 2 2 2

2 2

1 1 1 1
exp( ) exp exp ( )

2 2 22
Q       

  

  
  
  

  
  

 
                    

   

The expression before the large parenthesis does not depend on  at all. The expression inside the
large square brackets is the probability density function for a Gaussian distribution with mean

2      and standard deviation  , so the integral of this expression is exactly 1. Thus, the

integral (1) takes the desired form

2 21
exp

2
   

 
       

 
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